Advertisement

Journal of Statistical Physics

, Volume 150, Issue 3, pp 414–431 | Cite as

Exotic Ground States of Directional Pair Potentials via Collective-Density Variables

  • Stephen Martis
  • Étienne Marcotte
  • Frank H. Stillinger
  • Salvatore Torquato
Article

Abstract

Collective-density variables have proved to be a useful tool in the prediction and manipulation of how spatial patterns form in the classical many-body problem. Previous work has employed properties of collective-density variables along with a robust numerical optimization technique to find the classical ground states of many-particle systems subject to radial pair potentials in one, two and three dimensions. That work led to the identification of ordered and disordered classical ground states. In this paper, we extend these collective-coordinate studies by investigating the ground states of directional pair potentials in two dimensions. Our study focuses on directional potentials whose Fourier representations are non-zero on compact sets that are symmetric with respect to the origin and zero everywhere else. We choose to focus on one representative set that has exotic ground-state properties: two circles whose centers are separated by some fixed distance. We obtain ground states for this “two-circle” potential that display large void regions in the disordered regime. As more degrees of freedom are constrained the ground states exhibit a collapse of dimensionality characterized by the emergence of filamentary structures and linear chains. This collapse of dimensionality has not been observed before in related studies.

Keywords

Ground states Collective coordinates Directional potentials 

Notes

Acknowledgements

We are pleased to offer this contribution to honor M. Fisher, J. Percus, and B. Widom whose own remarkable contributions have vividly demonstrated the originality intrinsic to statistical mechanics. This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Grant No. DE-FG02-04-ER46108.

References

  1. 1.
    Feynman, R.P.: Statistical Mechanics. Benjamin, Reading (1972) Google Scholar
  2. 2.
    Yevick, G.J., Percus, J.K.: New approach to the many-body problem. Phys. Rev. 101(3), 1186 (1956) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Percus, J.K., Yevick, G.J.: Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110, 1 (1958) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Fan, Y., Percus, J.K., Stillinger, D.K., Stillinger, F.H.: Constraints on collective density variables: one dimension. Phys. Rev. A 44(4), 2394 (1991) ADSCrossRefGoogle Scholar
  5. 5.
    Uche, O.U., Stillinger, F.H., Torquato, S.: Constraints on collective density variables: two dimensions. Phys. Rev. E 70, 046122 (2004) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Sütő, A.: Crystalline ground states for classical particles. Phys. Rev. Lett. 95, 265501 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    Sütő, A.: From bcc to fcc: interplay between oscillating long-range and repulsive short-range forces. Phys. Rev. B 74, 104117 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    Uche, O.U., Torquato, S., Stillinger, F.H.: Collective coordinate control of density distributions. Phys. Rev. E 74, 031104 (2006) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Torquato, S., Stillinger, F.H.: New duality relations for classical ground states. Phys. Rev. Lett. 100, 020602 (2008) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Batten, R.D., Stillinger, F.H., Torquato, S.: Classical disordered ground states: super-ideal gases and stealth and equi-luminous materials. J. Appl. Phys. 104, 033504 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Zachary, C.E., Torquato, S.: Anomalous local coordination, density fluctuations, and void statistics in disordered hyperuniform many-particle ground states. Phys. Rev. E 83, 051133 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    Torquato, S., Zachary, C.E., Stillinger, F.H.: Duality relations for the classical ground states of soft-matter systems. Soft Matter 7, 3780 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    Batten, R.D., Stillinger, F.H., Torquato, S.: Inherent structures for soft long-range interactions in two-dimensional many-particle systems. J. Chem. Phys. 135, 054104 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    Likos, C.N.: Going to ground. Nature 440, 7083 (2006) CrossRefGoogle Scholar
  15. 15.
    Zachary, C.E., Stillinger, F.H., Torquato, S.: Gaussian core model phase diagram and pair correlations in high Euclidean dimensions. J. Chem. Phys. 128, 224505 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Flory, P.J., Krigbaum, W.R.: Statistical mechanics of dilute polymer solutions. II. J. Chem. Phys. 18, 1086 (1950) ADSCrossRefGoogle Scholar
  17. 17.
    Venables, J.: Introduction to Surface and Thin Film Processes. Cambridge University Press, Cambridge (2000) CrossRefGoogle Scholar
  18. 18.
    Florescu, M., Torquato, S., Steinhardt, P.J.: Designer disordered materials with large, complete photonic band gaps. Proc. Natl. Acad. Sci. USA 106, 49 (2009) CrossRefGoogle Scholar
  19. 19.
    Giacometti, A., Lado, F., Largo, J., Pastore, G., Sciortino, F.: Effects of patch size and number within a simple model of patchy colloids. J. Chem. Phys. 132, 174110 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    Bianchi, E., Blaak, R., Likos, C.: Patchy colloids: state of the art and perspectives. PCCP, Phys. Chem. Chem. Phys. 13, 6397–6410 (2011) CrossRefGoogle Scholar
  21. 21.
    Kaufman, L.: A reduced storage quasi-Newton trust region approach to function optimization. SIAM J. Optim. 10, 56 (1999) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Torquato, S., Stillinger, F.H.: Local density fluctuations, hyperuniform systems, and order metrics. Phys. Rev. E 68, 041113 (2003) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Torquato, S., Scardicchio, A., Zachary, C.E.: Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory. J. Stat. Mech. Theory Exp. P11019 (2008) Google Scholar
  24. 24.
    Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262, 209 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Stein, E.M., Shakarchi, R.: Fourier Analysis: An Introduction. Princeton University Press, Princeton (2003) MATHGoogle Scholar
  26. 26.
    van de Weygaert, R.: Voids and the Geometry of Large Scale Structure. University of Leiden, Leiden (1991) Google Scholar
  27. 27.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, London (1999) MATHCrossRefGoogle Scholar
  28. 28.
    Torquato, S.: Inverse optimization techniques for targeted self-asssembly. Soft Matter 5, 1157 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    Bracewell, R.N., Chang, K.-Y., Jha, A.K., Wang, Y.-H.: Affine theorem for two-dimensional Fourier transform. Electron. Lett. 29, 3 (1993) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Stephen Martis
    • 1
  • Étienne Marcotte
    • 1
  • Frank H. Stillinger
    • 2
  • Salvatore Torquato
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA
  3. 3.Princeton Center for Theoretical SciencePrinceton UniversityPrincetonUSA
  4. 4.Princeton Institute for the Science and Technology of MaterialsPrinceton UniversityPrincetonUSA
  5. 5.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations