Journal of Statistical Physics

, Volume 148, Issue 1, pp 67–88 | Cite as

The Height Fluctuations of an Off-Critical Dimer Model on the Square Grid

  • Sunil Chhita


The dimer model on a planar bipartite graph can be viewed as a random surface measure. We study these fluctuations for a dimer model on the square grid with two different classes of weights and provide a condition for their equivalence. In the thermodynamic limit and scaling window, these height fluctuations are shown to be non-Gaussian.


Dimer model Scaling window Non-Gaussian 



I would like to particularly thank Richard Kenyon for the many fruitful discussions which have led to this paper. I would also like to thank David Brydges for discussions of statistical mechanical models, Scott Sheffield for some very useful suggestions, Cédric Boutillier, Benjamin Young and Adrien Kassel for very many useful comments on this paper. Supported/Partially supported by the grant KAW 2010.0063 from the Knut and Alice Wallenberg Foundation.


  1. 1.
    Bauer, M., Bernard, D., Kytölä, K.: LERW as an example of off-critical SLEs. J. Stat. Phys. 132(4), 721–754 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Uniform spanning forests. Ann. Probab. 29(1), 1–65 (2001) MathSciNetMATHGoogle Scholar
  3. 3.
    Brydges, D.C., Fröhlich, J., Sokal, A.D.: The random-walk representation of classical spin systems and correlation inequalities. II. The skeleton inequalities. Commun. Math. Phys. 91(1), 117–139 (1983) ADSCrossRefGoogle Scholar
  4. 4.
    Camia, F., Joosten, M., Meester, R.: Trivial, critical and near-critical scaling limits of two-dimensional percolation. J. Stat. Phys. 137(1), 57–69 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Funaki, T.: Stochastic interface models. In: Lectures on Probability Theory and Statistics. Lecture Notes in Math., vol. 1869, pp. 103–274. Springer, Berlin (2005) CrossRefGoogle Scholar
  6. 6.
    Kasteleyn, P.W.: The statistics of dimers on a lattice: I. the number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961) ADSCrossRefGoogle Scholar
  7. 7.
    Kenyon, R.: Local statistics of lattice dimers. Ann. Inst. Henri Poincaré Probab. Stat. 33(5), 591–618 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Kenyon, R.: Conformal invariance of domino tiling. Ann. Probab. 28(2), 759–795 (2000) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kenyon, R.: Long-range properties of spanning trees. J. Math. Phys. 41(3), 1338–1363 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Kenyon, R.: Dominos and the Gaussian free field. Ann. Probab. 29(3), 1128–1137 (2001) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kenyon, R.: Lectures on dimers. In: Statistical Mechanics. IAS/Park City Math. Ser., vol. 16, pp. 191–230. Am. Math. Soc., Providence (2009) Google Scholar
  12. 12.
    Kenyon, R.W., Propp, J.G., Wilson, D.B.: Trees and matchings. Electron. J. Comb. 7, Research Paper 25, 34 pp. (2000) (electronic) Google Scholar
  13. 13.
    Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. (2) 163(3), 1019–1056 (2006) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lashkevich, M.: Scaling limit of the six-vertex model in the framework of free field representation. J. High Energy Phys. 10, Paper 3, 18 pp. (1997) (electronic) Google Scholar
  15. 15.
    Lawler, G.F.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, vol. 114. Am. Math. Soc., Providence (2005) MATHGoogle Scholar
  16. 16.
    Lukyanov, S.: Form factors of exponential fields in the sine-Gordon model. Mod. Phys. Lett. A 12(33), 2543–2550 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Makarov, N., Smirnov, S.: Off-critical Lattice Models and Massive SLEs (2009). doi: 10.1142/9789814304634_0024
  18. 18.
    Nolin, P., Werner, W.: Asymmetry of near-critical percolation interfaces. J. Am. Math. Soc. 22(3), 797–819 (2009) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Sheffield, S.: Random surfaces. Astérisque 304, vi+175 (2005) Google Scholar
  22. 22.
    Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3–4), 521–541 (2007) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Wendelin, W.: Random Planar Curves and Schramm-Loewner Evolutions. Lecture Notes in Math., vol. 1840. Springer, Berlin (2004) Google Scholar
  24. 24.
    Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, 1996, pp. 296–303. ACM, New York (1996) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Royal Institute of Technology KTHStockholmSweden

Personalised recommendations