Skip to main content
Log in

Microcanonical Analysis of Exactness of the Mean-Field Theory in Long-Range Interacting Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Classical spin systems with nonadditive long-range interactions are studied in the microcanonical ensemble. It is expected that the entropy of such a system is identical to that of the corresponding mean-field model, which is called “exactness of the mean-field theory”. It is found out that this expectation is not necessarily true if the microcanonical ensemble is not equivalent to the canonical ensemble in the mean-field model. Moreover, necessary and sufficient conditions for exactness of the mean-field theory are obtained. These conditions are investigated for two concrete models, the α-Potts model with annealed vacancies and the α-Potts model with invisible states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bachelard, R., Dauxois, T., De Ninno, G., Ruffo, S., Staniscia, F.: Vlasov equation for long-range interactions on a lattice. Phys. Rev. E 83, 061132 (2011)

    Article  ADS  Google Scholar 

  2. Barré, J.: Microcanonical solution of lattice models with long-range interactions. Phys. A, Stat. Mech. Appl. 305, 172–177 (2002)

    Article  MATH  Google Scholar 

  3. Barré, J., Mukamel, D., Ruffo, S.: Inequivalence of ensembles in a system with long-range interactions. Phys. Rev. Lett. 87(3), 030601 (2001)

    Article  ADS  Google Scholar 

  4. Barré, J., Bouchet, F., Dauxois, T., Ruffo, S.: Large deviation techniques applied to systems with long-range interactions. J. Stat. Phys. 119, 677–713 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bertalan, Z., Takahashi, K.: Ensemble inequivalence and the spin-glass transition. ArXiv preprint arXiv:1109.6366 (2011)

  6. Bouchet, F., Gupta, S., Mukamel, D.: Thermodynamics and dynamics of systems with long-range interactions. Phys. A, Stat. Mech. Appl. 389, 4389–4405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Campa, A., Giansanti, A., Moroni, D.: Canonical solution of a system of long-range interacting rotators on a lattice. Phys. Rev. E 62, 303–306 (2000)

    Article  ADS  Google Scholar 

  8. Campa, A., Giansanti, A., Moroni, D.: Canonical solution of classical magnetic models with long-range couplings. J. Phys. A, Math. Theor. 36, 6897–6921 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57–159 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. Cannas, S., de Magalhaes, A., Tamarit, F.: Evidence of exactness of the mean-field theory in the nonextensive regime of long-range classical spin models. Phys. Rev. B 61, 11521–11528 (2000)

    Article  ADS  Google Scholar 

  11. Creutz, M.: Microcanonical Monte Carlo simulation. Phys. Rev. Lett. 50, 1411–1414 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  12. Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M.: Dynamics and Thermodynamics of Systems with Long Range Interactions. Lecture Notes in Physics, vol. 602 (2002)

    Book  Google Scholar 

  13. Dauxois, T., Ruffo, S., Cugliandolo, L.: Long-range interacting systems. In: Les Houches Summer School (2008)

  14. Gupta, S., Mukamel, D.: Quasistationarity in a model of classical spins with long-range interactions. J. Stat. Mech. Theory Exp. 2011, P03015 (2011)

    Article  Google Scholar 

  15. Kac, M., Uhlenbeck, G., Hemmer, P.: On the van der Waals theory of the vapor-liquid equilibrium. I: Discussion of a one-dimensional model. J. Math. Phys. 4, 216–228 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  16. Lebowitz, J., Penrose, O.: Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition. J. Math. Phys. 7, 98 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  17. Leyvraz, F., Ruffo, S.: Ensemble inequivalence in systems with long-range interactions. J. Phys. A, Math. Gen. 35, 285 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Magnus, J., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, New York (1988)

    MATH  Google Scholar 

  19. Mori, T.: Analysis of the exactness of mean-field theory in long-range interacting systems. Phys. Rev. E 82, 060103 (2010)

    Article  ADS  Google Scholar 

  20. Mori, T.: Instability of the mean-field states and generalization of phase separation in long-range interacting systems. Phys. Rev. E 84, 031128 (2011)

    Article  ADS  Google Scholar 

  21. Pakter, R., Levin, Y.: Core-halo distribution in the Hamiltonian mean-field model. Phys. Rev. Lett. 106, 200603 (2011)

    Article  ADS  Google Scholar 

  22. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  23. Tamura, R., Tanaka, S., Kawashima, N.: Phase transition in Potts model with invisible states. Prog. Theor. Phys. 124, 381–388 (2010)

    Article  ADS  MATH  Google Scholar 

  24. Thirring, W.: Systems with negative specific heat. Z. Phys. A 235, 339–352 (1970)

    Google Scholar 

  25. Yamaguchi, Y., Barré, J., Bouchet, F., Dauxois, T., Ruffo, S.: Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model. Phys. A, Stat. Theor. Phys. 337, 36–66 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. Seiji Miyashita for useful comments and Dr. Shu Tanaka for careful reading of the manuscript. He acknowledges JSPS for financial support (Grant No. 227835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Mori.

Appendix: Bordered Hessian Matrix

Appendix: Bordered Hessian Matrix

In this Appendix, we briefly explain the method of the bordered Hessian matrix. We want to find a maximum of a function \(f(\overrightarrow{x})\) under the condition \(g(\overrightarrow{x})=0\). The vector \(\overrightarrow{x}\) is assumed to be a vector with n-components. We introduce the Lagrange function with a Lagrange multiplier λ,

$$ L(\lambda,\overrightarrow{x})\equiv f(\overrightarrow{x})-\lambda g( \overrightarrow{x}). $$
(67)

Candidates of maximum are obtained by

$$ \frac{\partial L}{\partial\lambda}=0,\qquad\frac{\partial L}{\partial \overrightarrow{x}}=0. $$
(68)

Solutions of Eq. (68) are denoted by λ and \(\overrightarrow{x}^{*}\).

The solution \((\lambda^{*},\overrightarrow{x}^{*})\) does not necessarily give a maximum point. In order to judge whether the solution gives the maximum, the method of the bordered Hessian is used. The bordered Hessian is defined as the following matrix,

$$ \mathcal{H}\equiv \begin{pmatrix} 0&\quad-\frac{\partial g}{\partial{x}_1^*}&\quad\cdots&\quad-\frac{\partial g}{\partial{x}_n^*} \\ -\frac{\partial g}{\partial{x}_1^*}&\quad\frac{\partial^2L}{\partial {x}_1^*\partial{x}_1^*}&\quad\cdots &\quad\frac{\partial^2L}{\partial{x}_1^*\partial{x}_n^*} \\ \vdots&\quad\vdots&\quad\ddots&\quad\vdots\\ -\frac{\partial g}{\partial{x}_n^*}&\quad\frac{\partial^2L}{\partial {x}_n^*\partial{x}_1^*}&\quad\cdots &\quad\frac{\partial^2L}{\partial{x}_n^*\partial{x}_n^*} \end{pmatrix} . $$
(69)

The k-th order minor determinant is defined as \(\det\mathcal{H}^{(k)}\), where

$$ \mathcal{H}^{(k)}\equiv \begin{pmatrix} 0&\quad-\frac{\partial g}{\partial{x}_1^*}&\quad\cdots&\quad-\frac{\partial g}{\partial{x}_{k}^*} \\ -\frac{\partial g}{\partial{x}_1^*}&\quad\frac{\partial^2L}{\partial {x}_1^*\partial{x}_1^*}&\quad\cdots &\quad\frac{\partial^2L}{\partial{x}_1^*\partial{x}_{k}^*} \\ \vdots&\quad\vdots\quad&\ddots&\quad\vdots\\ -\frac{\partial g}{\partial{x}_{k}^*}&\quad\frac{\partial^2L}{\partial {x}_{k}^*\partial {x}_1^*}&\quad\cdots &\quad\frac{\partial^2L}{\partial{x}_{k}^*\partial{x}_{k}^*} \end{pmatrix} . $$
(70)

Whether the point \((\lambda^{*},\overrightarrow{x}^{*})\) is maximum can be judged from the sign of the minor determinants of the bordered Hessian matrix. The point \((\lambda^{*},\overrightarrow{x}^{*})\) is maximum if \((-1)^{k}\det \mathcal{H}^{(k)}>\nobreak0\) for all k=2,3,…,n. See [18] for more detail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, T. Microcanonical Analysis of Exactness of the Mean-Field Theory in Long-Range Interacting Systems. J Stat Phys 147, 1020–1040 (2012). https://doi.org/10.1007/s10955-012-0511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0511-0

Keywords

Navigation