Advertisement

Journal of Statistical Physics

, Volume 147, Issue 5, pp 1020–1040 | Cite as

Microcanonical Analysis of Exactness of the Mean-Field Theory in Long-Range Interacting Systems

  • Takashi Mori
Article

Abstract

Classical spin systems with nonadditive long-range interactions are studied in the microcanonical ensemble. It is expected that the entropy of such a system is identical to that of the corresponding mean-field model, which is called “exactness of the mean-field theory”. It is found out that this expectation is not necessarily true if the microcanonical ensemble is not equivalent to the canonical ensemble in the mean-field model. Moreover, necessary and sufficient conditions for exactness of the mean-field theory are obtained. These conditions are investigated for two concrete models, the α-Potts model with annealed vacancies and the α-Potts model with invisible states.

Keywords

Long-range interaction Mean-field theory Ensemble inequivalence 

Notes

Acknowledgements

The author is grateful to Prof. Seiji Miyashita for useful comments and Dr. Shu Tanaka for careful reading of the manuscript. He acknowledges JSPS for financial support (Grant No. 227835).

References

  1. 1.
    Bachelard, R., Dauxois, T., De Ninno, G., Ruffo, S., Staniscia, F.: Vlasov equation for long-range interactions on a lattice. Phys. Rev. E 83, 061132 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    Barré, J.: Microcanonical solution of lattice models with long-range interactions. Phys. A, Stat. Mech. Appl. 305, 172–177 (2002) MATHCrossRefGoogle Scholar
  3. 3.
    Barré, J., Mukamel, D., Ruffo, S.: Inequivalence of ensembles in a system with long-range interactions. Phys. Rev. Lett. 87(3), 030601 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    Barré, J., Bouchet, F., Dauxois, T., Ruffo, S.: Large deviation techniques applied to systems with long-range interactions. J. Stat. Phys. 119, 677–713 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Bertalan, Z., Takahashi, K.: Ensemble inequivalence and the spin-glass transition. ArXiv preprint arXiv:1109.6366 (2011)
  6. 6.
    Bouchet, F., Gupta, S., Mukamel, D.: Thermodynamics and dynamics of systems with long-range interactions. Phys. A, Stat. Mech. Appl. 389, 4389–4405 (2010) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Campa, A., Giansanti, A., Moroni, D.: Canonical solution of a system of long-range interacting rotators on a lattice. Phys. Rev. E 62, 303–306 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    Campa, A., Giansanti, A., Moroni, D.: Canonical solution of classical magnetic models with long-range couplings. J. Phys. A, Math. Theor. 36, 6897–6921 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57–159 (2009) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Cannas, S., de Magalhaes, A., Tamarit, F.: Evidence of exactness of the mean-field theory in the nonextensive regime of long-range classical spin models. Phys. Rev. B 61, 11521–11528 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    Creutz, M.: Microcanonical Monte Carlo simulation. Phys. Rev. Lett. 50, 1411–1414 (1983) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M.: Dynamics and Thermodynamics of Systems with Long Range Interactions. Lecture Notes in Physics, vol. 602 (2002) CrossRefGoogle Scholar
  13. 13.
    Dauxois, T., Ruffo, S., Cugliandolo, L.: Long-range interacting systems. In: Les Houches Summer School (2008) Google Scholar
  14. 14.
    Gupta, S., Mukamel, D.: Quasistationarity in a model of classical spins with long-range interactions. J. Stat. Mech. Theory Exp. 2011, P03015 (2011) CrossRefGoogle Scholar
  15. 15.
    Kac, M., Uhlenbeck, G., Hemmer, P.: On the van der Waals theory of the vapor-liquid equilibrium. I: Discussion of a one-dimensional model. J. Math. Phys. 4, 216–228 (1963) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Lebowitz, J., Penrose, O.: Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition. J. Math. Phys. 7, 98 (1966) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Leyvraz, F., Ruffo, S.: Ensemble inequivalence in systems with long-range interactions. J. Phys. A, Math. Gen. 35, 285 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Magnus, J., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, New York (1988) MATHGoogle Scholar
  19. 19.
    Mori, T.: Analysis of the exactness of mean-field theory in long-range interacting systems. Phys. Rev. E 82, 060103 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    Mori, T.: Instability of the mean-field states and generalization of phase separation in long-range interacting systems. Phys. Rev. E 84, 031128 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    Pakter, R., Levin, Y.: Core-halo distribution in the Hamiltonian mean-field model. Phys. Rev. Lett. 106, 200603 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999) MATHGoogle Scholar
  23. 23.
    Tamura, R., Tanaka, S., Kawashima, N.: Phase transition in Potts model with invisible states. Prog. Theor. Phys. 124, 381–388 (2010) ADSMATHCrossRefGoogle Scholar
  24. 24.
    Thirring, W.: Systems with negative specific heat. Z. Phys. A 235, 339–352 (1970) Google Scholar
  25. 25.
    Yamaguchi, Y., Barré, J., Bouchet, F., Dauxois, T., Ruffo, S.: Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model. Phys. A, Stat. Theor. Phys. 337, 36–66 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations