Skip to main content
Log in

Small-Angle Neutron Scattering Study on Aggregation of 1-Alkyl-3-methylimidazolium Based Ionic Liquids in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aggregation structures of 1-alkyl-3-methylimidazolium based ionic liquids (ILs) in aqueous solution were investigated by small-angle neutron scattering (SANS) from the viewpoint of alkyl chain length, n, and anions (Cl, Br and trifluoromethanesulfonate, \( {\text{CF}}_{3} {\text{SO}}_{3}^{ - } \)). In [C4mIm+]-based IL systems, no noticeable SANS intensity was observed for all of the systems examined here, although aqueous [C4mIm+][\( {\text{BF}}_{4}^{ - } \)] solutions show a significant SANS profile originating from concentration fluctuations in the solution (Almasy et al. J Phys Chem B 112:2382–2387, 2008). This suggests that [C4mIm+][Cl], [C4mIm+][Br] and [C4mIm+][\( {\text{CF}}_{3} {\text{SO}}_{3}^{ - } \)] homogeneously mix with water, unlike the [C4mIm+][\( {\text{BF}}_{4}^{ - } \)] system, due to preferential hydration of the ions. In the case of the C n mIm cations with longer alkyl chain lengths (n = 8 and 12), SANS profiles were clearly observed in the aqueous solutions at IL concentrations of C IL > 230 and 20.0 mmol·dm−3, respectively. For aqueous [C8mIm+][Br] solutions, the asymptotic behavior of the scattering function varied largely from I(q) ~ q −2 to ~q −4 with increasing C IL, indicating that the solution changes from an inhomogeneous mixing state to a nano-scale micelle state. Aqueous [C12mIm+][Br] solutions show a typical SANS profile for micelle formation in solution. It was found from a model-fitting analysis that the structure of the [C12mIm+][Br] micelle is ellipsoidal, not spherical, in solutions over the C IL range examined here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wasserscheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis, 2nd edn. Wiley, Weinheim (2008)

    Google Scholar 

  2. Pandey, S.: Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal. Chim. Acta 556, 38–45 (2006)

    Article  CAS  Google Scholar 

  3. Brennecke, J.F., Rogers, R.D., Seddon, K.R. (eds.): Ionic Liquids IV. ACS, Washington, DC (2007)

    Google Scholar 

  4. Ohno, H. (ed.): Electrochemical Aspects of Ionic Liquids. Wiley, New York (2005)

    Google Scholar 

  5. Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E., Rogers, R.D.: Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun. 16, 1765–1766 (1998)

    Article  Google Scholar 

  6. Pádua, A.A.H., Gomes, M.F.C., Lopes, J.N.A.C.: Molecular solutes in ionic liquids: a structural perspective. Acc. Chem. Res. 40, 1087–1096 (2007)

    Article  Google Scholar 

  7. Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F.: Green processing using ionic liquids and CO2. Nature 399, 28–29 (1999)

    Article  Google Scholar 

  8. Fujii, K., Ishiguro, S., Umebayashi, Y.: Trends in Ionic Liquid Electrochemistry Research Vibration Spectroscopic Study of Room-Temperature Ionic Liquids—Conformational Isomerism and Metal Ion Solvation, Chap. 5. Nova Science Publishers, Inc., New York (2010)

  9. Fujii, K., Asai, H., Ueki, T., Sakai, T., Imaizumi, S., Chung, U., Watanabe, M., Shibayama, M.: High-performance ion gel with tetra-PEG network. Soft Matter 8, 1756–1759 (2012)

    Article  CAS  Google Scholar 

  10. Susan, M.A., Kaneko, T., Noda, A., Watanabe, M.: Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127, 4976–4983 (2005)

    Article  CAS  Google Scholar 

  11. Bates, E.D., Mayton, R.D., Ntai, I., Davis Jr, J.H.: CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 124, 926–927 (2002)

    Article  CAS  Google Scholar 

  12. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002)

    Article  CAS  Google Scholar 

  13. Arce, A., Earle, M.J., Katdare, S.P., Rodriguez, H., Seddon, K.R.: Application of mutually immiscible ionic liquids to the separation of aromatic and aliphatic hydrocarbons by liquid extraction: a preliminary approach. Phys. Chem. Chem. Phys. 10, 2538–2542 (2008)

    Article  CAS  Google Scholar 

  14. Anderson, J.L., Armstrong, D.W., Wei, G.: Ionic liquids in analytical chemistry. Anal. Chem. 78, 2893–2902 (2006)

    CAS  Google Scholar 

  15. Villagran, C., Deetlefs, M., Pitner, W.R., Hardacre, C.: Quantification of halide in ionic liquids using ion chromatography. Anal. Chem. 76, 2118–2123 (2004)

    Article  CAS  Google Scholar 

  16. Charoenraks, T., Tabata, M., Fujii, K.: A micro-solvent cluster extraction using aqueous mixed solvents of ionic liquid. Anal. Sci. 24, 1239–1244 (2008)

    Article  CAS  Google Scholar 

  17. Bandres, I., Meler, S., Giner, B., Cea, P., Lafuente, C.: Aggregation behavior of pyridinium-based ionic liquids in aqueous solution. J. Solution Chem. 38, 1622–1634 (2009)

    Article  CAS  Google Scholar 

  18. Kiselev, V.D., Kashaeva, H.A., Shakirova, I.I., Potapova, L.N., Konovalov, A.I.: Solvent effect on the enthalpy of solution and partial molar volume of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. J. Solution Chem. 41, 1375–1387 (2012)

    Article  CAS  Google Scholar 

  19. Domanska, U., Krolikowska, M.: Density and viscosity of binary mixtures of thiocyanate ionic liquids+water as a function of temperature. J. Solution Chem. 41, 1422–1445 (2012)

    Article  CAS  Google Scholar 

  20. Sastry, N.V., Vaghela, N.M., Macwan, P.M., Soni, S.S., Aswal, V.K., Gibaud, A.: Aggregation behavior of pyridinium based ionic liquids in water: surface tension, 1H NMR chemical shifts, SANS and SAXS measurements. J. Colloid Interface Sci. 371, 52–61 (2012)

    Article  CAS  Google Scholar 

  21. El-Dossoki, F.I.: Micellization thermodynamics of some imidazolium ionic liquids in aqueous solutions—conductometric study. J. Solution Chem. 42, 125–135 (2013)

    Article  CAS  Google Scholar 

  22. Francois, Y., Zhang, K., Varenne, A., Gareil, P.: New integrated measurement protocol using capillary electrophoresis instrumentation for the determination of viscosity, conductivity and absorbance of ionic liquid–molecular solvent mixtures. Anal. Chim. Acta 562, 164–170 (2006)

    Article  CAS  Google Scholar 

  23. Vaghela, N.M., Sastry, V., Aswal, V.K.: Surface active and aggregation behavior of methylimidazolium-based ionic liquids of type [C n mIm][X], n = 4, 6, 8 and [X] = Cl, Br, I in water. Colloid Polym. Sci. 289, 309–322 (2011)

    Article  CAS  Google Scholar 

  24. Sastry, N.V., Vaghela, N.M., Aswal, V.K.: Effect of alkyl chain length and head group on surface active and aggregation behavior of ionic liquids in water. Fluid Phase Equilib. 327, 22–29 (2012)

    Article  CAS  Google Scholar 

  25. Jeon, Y., Sung, J., Kim, D., Seo, C., Cheong, H., Ouchi, Y., Ozawa, R., Hamaguchi, H.: Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate+water mixtures studied by infrared vibrational spectroscopy. J. Phys. Chem. B 112, 923–928 (2008)

    Article  CAS  Google Scholar 

  26. Takamuku, T., Kyoshoin, Y., Shimomura, T., Kittaka, S., Yamaguchi, T.: Effect of water on structure of hydrophilic imidazolium-based ionic liquid. J. Phys. Chem. B 113, 10817–10824 (2009)

    Article  CAS  Google Scholar 

  27. Takamuku, T., Shimomura, T., Sadacane, K., Seto, H.: Aggregation of 1-dodecyl-3-methylimidazolium nitrate in water and benzene studied by SANS and 1H NMR. Phys. Chem. Chem. Phys. 14, 11070–11080 (2012)

    Article  CAS  Google Scholar 

  28. Katayanagi, H., Nishikawa, K., Shimozaki, H., Miki, K., Westh, P., Koga, Y.: Mixing schemes in ionic liquid–H2O systems: a thermodynamic study. J. Phys. Chem. B 108, 19451–19457 (2004)

    Article  CAS  Google Scholar 

  29. Bowers, J., Butts, C.P., Martin, P.J., Vergara-Gutierrez, M.C.: Aggregation behavior of aqueous solutions of ionic liquids. Langmuir 20, 2191–2198 (2004)

    Article  CAS  Google Scholar 

  30. Almasy, L., Turmine, M., Perera, A.: Structure of aqueous solutions of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate by small-angle neutron scattering. J. Phys. Chem. B 112, 2382–2387 (2008)

    Article  CAS  Google Scholar 

  31. Nishikawa, K., Hayashi, H., Iijima, T.: Temperature dependence of the concentration fluctuation, the Kirkwood–Buff parameters, and the correlation length of tert-butyl alcohol and water mixtures studied by small-angle X-ray scattering. J. Phys. Chem. 93, 6559–6565 (1989)

    Article  CAS  Google Scholar 

  32. Wakisaka, A., Komatsu, S., Usui, Y.: Solute–solvent and solvent–solvent interactions evaluated through clusters isolated from solutions: preferential solvation in water–alcohol mixtures. J. Mol. Liquids 90, 175–184 (2001)

    Article  CAS  Google Scholar 

  33. Takamuku, T., Tabata, M., Yamaguchi, A., Nishimoto, J., Kumamoto, M., Wakita, H., Yamaguchi, T.: Liquid structure of acetonitrile–water mixtures by x-ray diffraction and infrared spectroscopy. J. Phys. Chem. B 102, 8880–8888 (1998)

    Article  CAS  Google Scholar 

  34. Takamuku, T., Honda, Y., Fujii, K., Kittaka, H.: Aggregation of imidazolium ionic liquids in molecular liquids studied by small-angle neutron scattering and NMR. Anal. Sci. 24, 1285–1290 (2008)

    Article  CAS  Google Scholar 

  35. Shimomura, T., Fujii, K., Takamuku, T.: Effects of alkyl-chain length on mixing state of imidazolium-based ionic liquid–methanol solutions. Phys. Chem. Chem. Phys. 12, 12316–12324 (2010)

    Article  CAS  Google Scholar 

  36. Smirnova, N.A., Vanin, A.A., Safonova, E.A., Pukinsky, I.B., Anufrikov, Y.A., Makarov, A.L.: Self-assembly in aqueous solutions of imidazolium ionic liquids and their mixtures with an anionic surfactant. J. Colloid Interface Sci. 336, 793–802 (2009)

    Article  CAS  Google Scholar 

  37. Smirnova, N.A., Safonova, E.A.: Ionic liquids as surfactants. Russ. J. Phys. Chem. A 84, 1695–1704 (2010)

    Article  CAS  Google Scholar 

  38. Smirnova, N.A., Safonova, E.A.: Micellization in solutions of ionic liquids. Colloid J. 74, 254–265 (2012)

    Article  CAS  Google Scholar 

  39. Goodchild, I., Collier, L., Millar, S.L., Prokes, I., Lord, J.C.D., Butts, C.P., Bowers, J., Webster, J.R.P., Heenan, R.K.: Structural studies of the phase, aggregation and surface behavior of 1-alkyl-3-methylimidazolium halide+water mixtures. J. Colloid Interface Sci. 307, 455–468 (2007)

    Article  CAS  Google Scholar 

  40. Nockemann, P., Binnemans, K., Driesen, K.: Purification of imidazolium ionic liquids for spectroscopic applications. Chem. Phys. Lett. 415, 131–136 (2005)

    Article  CAS  Google Scholar 

  41. Iwase, H., Endo, H., Katagiri, M., Shibayama, M.: Modernization of the small-angle neutron scattering spectrometer SANS-U by upgrade to a focusing SANS spectrometer. J. Appl. Cryst. 44, 558–568 (2011)

    Article  CAS  Google Scholar 

  42. Shibayama, M., Matsunaga, T., Nagao, M.: Evaluation of incoherent scattering intensity by transmission and sample thickness. J. Appl. Crystallogr. 42, 621–628 (2009)

    Article  CAS  Google Scholar 

  43. Hayter, J.B., Penfold, J.: An analytic structure factor for macroion solutions. Mol. Phys. 42, 109–118 (1981)

    Article  CAS  Google Scholar 

  44. Guinier, A., Fournet, G.: Small-Angle Scattering of X-rays. Wiley, New York (1955)

    Google Scholar 

  45. Helgeson, M.E., Hodgdon, T.K., Kaler, E.W., Wagner, N.J.: A systematic study of equilibrium structure, thermodynamics, and rheology of aqueous CTAB/NaNO3 wormlike micelles. J. Colloid Interface Sci. 349, 1–12 (2010)

    Article  CAS  Google Scholar 

  46. Guo, L., Colby, R.H., Lin, M.Y., Dado, G.P.: Micellar structure change in aqueous mixtures of nonionic surfactants. J. Rheol. 45, 1223–1243 (2001)

    Article  CAS  Google Scholar 

  47. Guinier, A.: Diffraction of X-rays of very small angles: application of ultramicroscopic phenomenon. Ann. Phys. 12, 161–237 (1939)

    CAS  Google Scholar 

  48. Hirata, H., Hattori, N., Ishida, M., Okabayashi, H., Frusaka, M., Zana, R.: Small-angle neutron-scattering study of bis(quaternary ammonium bromide) surfactant micelles in water. Effect of the spacer chain length on micellar structure. J. Phys. Chem. 99, 17778–17784 (1995)

    Article  CAS  Google Scholar 

  49. Wang, J., Wang, H., Zhang, S., Zhang, H., Zhao, Y.: Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C n mim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. J. Phys. Chem. B 111, 6181–6188 (2007)

    Article  CAS  Google Scholar 

  50. Inoue, T., Ebina, H., Dong, B., Zheng, L.: Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J. Colloid Interface Sci. 314, 236–241 (2007)

    Article  CAS  Google Scholar 

  51. In, M., Bendjeriou, B., Noirez, L., Grillo, I.: Growth and branching of charged wormlike micelles as revealed by dilution laws. Langmuir 26, 10411–10414 (2010)

    Article  CAS  Google Scholar 

  52. Kusano, T., Iwase, H., Yoshimura, T., Shibayama, M.: Structural and rheological studies on growth of salt-free wormlike micelles formed by star-type trimeric surfactants. Langmuir 28, 16798–16806 (2012)

    Article  CAS  Google Scholar 

  53. Seki, S., Kobayashi, T., Takei, K., Miyashiro, H., Hayamizu, K., Tsuzuki, S., Mitsugi, T., Umebayashi, Y.: Effects of cation and anion on physical properties of room-temperature ionic liquids. J. Mol. Liq. 152, 9–13 (2010)

    Article  CAS  Google Scholar 

  54. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  55. Tanford, C.: The Hydrophobic Effect. Wiley, New York (1980)

    Google Scholar 

Download references

Acknowledgments

This work has been financially supported by Grant-in-Aids for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (No. 24750066 to KF, No. 22245018 to MS). The SANS experiments were performed with the approval of the Institute for Solid State Physics, The University of Tokyo (Proposal No. 8599 and 8847K), at the research reactor, JRR-3, Japan Atomic Energy Agency, Tokai, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenta Fujii or Mitsuhiro Shibayama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusano, T., Fujii, K., Tabata, M. et al. Small-Angle Neutron Scattering Study on Aggregation of 1-Alkyl-3-methylimidazolium Based Ionic Liquids in Aqueous Solution. J Solution Chem 42, 1888–1901 (2013). https://doi.org/10.1007/s10953-013-0080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0080-0

Keywords

Navigation