Advertisement

Journal of Solution Chemistry

, Volume 38, Issue 1, pp 115–134 | Cite as

Speciation of Phytate Ion in Aqueous Solution. Thermodynamic Parameters for Zinc(II) Sequestration at Different Ionic Strengths and Temperatures

  • Francesco Crea
  • Concetta De Stefano
  • Demetrio Milea
  • Silvio Sammartano
Article

Abstract

Results of an investigation on phytate interactions with zinc(II) cation in NaNO3aq at different ionic strengths (0.1≤I/mol⋅L−1≤1.0) are reported. Stability constants of various Zn i H j Phy(12−2ij)− species were determined by potentiometry (ISE-H+ glass electrode) and the corresponding formation enthalpies by direct calorimetric titrations. Data obtained were used to provide an exhaustive speciation scheme of zinc(II) in the presence of phytate, as well as a comprehensive representation of the binding ability of phytate toward zinc(II) in different conditions. Different pL50 values [an empirical parameter already proposed, expressed as the −log 10 C Phy, where C Phy is the total phytate concentration necessary to bind 50% zinc(II)] were calculated in several conditions, and equations were formulated to model its dependence on different variables, such as ionic strength, temperature and pH. Other empirical predictive relationships are also proposed.

Keywords

Phytate Zinc(II) Sequestration Stability constants Enthalpy and entropy changes Empirical relationships 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crea, F., De Stefano, C., Milea, D., Sammartano, S.: Formation and stability of phytate complexes in solution. Coord. Chem. Rev. 252, 1108–1120 (2008) CrossRefGoogle Scholar
  2. 2.
    Oatway, L., Vasanthan, T., Helm, J.H.: Phytic Acid. Food Rev. Int. 17, 419–431 (2001) CrossRefGoogle Scholar
  3. 3.
    Konietzny, U., Jany, K.D., R., G.: Phytate-an undesiderable constituent of plant-based foods? J. Ernaehrungsmed. 8, 18–28 (2006) Google Scholar
  4. 4.
    Shears, S.B.: Assessing the omnipotence of inositol hexakisphosphate. Cell. Signal. 13, 151–158 (2001) CrossRefGoogle Scholar
  5. 5.
    Urbano, G., Lopez-Jurado, M., Vidal-Valverde, C., Tenorio, E., Porres, J.: The role of phytic acid in legumes: antinutrient or beneficial function? J. Physiol. Biochem. 56, 283–294 (2000) CrossRefGoogle Scholar
  6. 6.
    Prasad, A.N.: Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp. Gerontol. 43, 370–377 (2008) CrossRefGoogle Scholar
  7. 7.
    Haydon, M.J., Cobbett, C.S.: Transporters of ligands for essential metal ions in plants. New Phytol. 174, 499–506 (2007) CrossRefGoogle Scholar
  8. 8.
    Kim, J., Paik, H.Y., Joung, H., Woodhouse, L.R., Li, S., King, J.C.: Effect of dietary phytate on zinc homeostasis in young and elderly Korean women. J. Am. Coll. Nutr. 26, 1–9 (2007) Google Scholar
  9. 9.
    Welch, R., House, W.A., Ortiz-Monasterio, I., Cheng, Z.: Potential for improving bioavailable zinc in wheat grain (Triticum species) through plant breeding. J. Agric. Food Chem. 53, 2176–2180 (2005) CrossRefGoogle Scholar
  10. 10.
    Rodrigues-Filho, U.P., Vaz, S., Felicissimo, M.P., Scarpellini, M., Cardoso, D.R., Vinhas, R.C.J., Landers, R., Schneider, J.F., McGarvey, B.R., Andersen, M.L., Skibsted, L.H.: Heterometallic manganese/zinc-phytate complex as a model compound for metal storage in wheat grains. J. Inorg. Biochem. 99, 1973–1982 (2005) CrossRefGoogle Scholar
  11. 11.
    Reddy, N.R., Sathe, S.K.: Food Phytates. CRC Press, Boca Raton (2001) Google Scholar
  12. 12.
    Ma, G., Jin, Y., Piao, J., Kok, F., Guusje, B., Jacobsen, E.: Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. J. Agric. Food Chem. 53, 10285–10290 (2007) CrossRefGoogle Scholar
  13. 13.
    Polycarpe Kayodé, A.P., Linnemann, A.R., Hounhouigan, J.D., Nout, M.J.R., van Boekel, M.A.J.S.: Genetic and environmental impact on iron, zinc, and phytate in food sorghum grown in Benin. J. Agric. Food. Chem. 54, 256–262 (2007) CrossRefGoogle Scholar
  14. 14.
    Lonnerdal, B.: Phytic acid-trace element (Zn, Cu, Mn) interactions. Int. J. Food Sci. Technol. 37, 749–758 (2002) CrossRefGoogle Scholar
  15. 15.
    Nosworthy, N., Caldwell, R.A.: The interaction of zinc(II) and phytic acid with soya bean glycinin. Sci. Food Agric. 44, 143–150 (1988) CrossRefGoogle Scholar
  16. 16.
    Bebot-Brigaud, A., Dange, C., Fauconnier, N., Gérard, C.: 31P NMR, potentiometric and spectrophotometric studies of phytic acid ionization and complexation properties toward Co2+, Ni2+, Cu2+, Zn2+ and Cd2+. J. Inorg. Biochem. 75, 71–78 (1999) CrossRefGoogle Scholar
  17. 17.
    Torres, J., Dominguez, S., Cerda, M.F., Obal, G., Mederos, A., Irvine, R.F., Diaz, A., Kremer, C.: Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. J. Inorg. Biochem. 99, 828–840 (2005) CrossRefGoogle Scholar
  18. 18.
    Champagne, E.T., Fisher, M.S.: Binding differences of Zn(II) and Cu(II) ions with phytate. J. Inorg. Biochem. 38, 217–223 (1990) CrossRefGoogle Scholar
  19. 19.
    Martin, C.J., Evans, W.J.: Phytic acid-zinc ion interactions: A calorimetric and titrimetric study. J. Inorg. Biochem. 26, 169–183 (1986) CrossRefGoogle Scholar
  20. 20.
    Persson, H., Türk, M., Nyman, M., Sandberg, A.S.: Binding of Cu2+, Zn2+, and Cd2+ to inositol tri-, tetra-, penta-, and hexaphosphates. J. Agric. Food Chem. 46, 3194–3200 (1998) CrossRefGoogle Scholar
  21. 21.
    Pierce, A.G.: Structure studies of phytate-zinc ion complexes: X-Ray diffraction and thermal analysis. Inorg. Chim. Acta 106, L9–L12 (1985) CrossRefGoogle Scholar
  22. 22.
    Templeton, D.M., Ariese, F., Cornelis, R., Danielsson, L.G., Muntau, H., van Leeuwen, H.P., Lobinski, R.: Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl. Chem. 72, 1453–1470 (2000) CrossRefGoogle Scholar
  23. 23.
    Flaschka, H.A.: EDTA Titration. Pergamon, London (1959) Google Scholar
  24. 24.
    De Stefano, C., Princi, P., Rigano, C., Sammartano, S.: Computer analysis of equilibrium data in solution. ESAB2M: An improved version of the ESAB program. Ann. Chim. (Rome) 77, 643–675 (1987) Google Scholar
  25. 25.
    De Stefano, C., Mineo, P., Rigano, C., Sammartano, S.: Ionic strength dependence of formation constants. XVII. The calculation of equilibrium concentrations and formation constants. Ann. Chim. (Rome) 83, 243–277 (1993) Google Scholar
  26. 26.
    De Stefano, C., Foti, C., Giuffrè, O., Mineo, P., Rigano, C., Sammartano, S.: Binding of tripolyphosphate by aliphatic amines: Formation, stability and calculation problems. Ann. Chim. (Rome) 86, 257–280 (1996) Google Scholar
  27. 27.
    De Stefano, C., Sammartano, S., Mineo, P., Rigano, C.: Computer tools for the speciation of natural fluids. In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds.) Marine Chemistry—An Environmental Analytical Chemistry Approach, pp. 71–83. Kluwer Academic, Amsterdam (1997) Google Scholar
  28. 28.
    De Robertis, A., De Stefano, C., Rigano, C.: Computer analysis of equilibrium data in solution. ES5CM Fortran and Basic programs for computing formation enthalpies from calorimetric measurements. Thermochim. Acta 138, 141–146 (1989) CrossRefGoogle Scholar
  29. 29.
    Millero, F.J.: The apparent and partial molal volume of aqueous sodium chloride solutions at various temperatures. J. Phys. Chem. 74, 356–362 (1970) CrossRefGoogle Scholar
  30. 30.
    Biederman, G.: Ionic Media. In: Dahlem Workshop on the Nature of Seawater, pp. 339–362. Dahlem Konferenzen, Berlin (1975) Google Scholar
  31. 31.
    Biederman, G., Introduction to the specific interaction theory with emphasis on chemical equilibria. In: Jenne, E.A., Rizzarelli, E., Romano, V.: Sammartano, S. (eds.) Metal Complexes in Solution, pp. 303–314. Piccin, Padua, Italy (1986) Google Scholar
  32. 32.
    Grenthe, I., Puigdomenech, I.: Modelling in Aquatic Chemistry. OECD, Paris (1997) Google Scholar
  33. 33.
    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973) CrossRefGoogle Scholar
  34. 34.
    Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Inc., Boca Raton (1991) Google Scholar
  35. 35.
    Millero, F.J.: Use of models to determine ionic interactions in natural waters. Thalass. Jugosl. 18, 253–291 (1982) Google Scholar
  36. 36.
    Bretti, C., Giacalone, A., Gianguzza, A., Milea, D., Sammartano, S.: Modeling S-carboxymethyl-L-cysteine protonation and activity coefficients in sodium and tetramethylammonium chloride aqueous solutions by SIT and Pitzer equations. Fluid Phase Equilib. 252, 119–129 (2007) CrossRefGoogle Scholar
  37. 37.
    Crea, P., De Robertis, A., De Stefano, C., Milea, D., Sammartano, S.: Modelling the dependence on medium and ionic strength of glutathione acid-base behavior in LiClaq, NaClaq, KClaq, CaClaq, (CH3)4NClaq and (C2H5)4NIaq. J. Chem. Eng. Data 52, 1028–1036 (2007) CrossRefGoogle Scholar
  38. 38.
    Crea, P., De Stefano, C., Milea, D., Porcino, N., Sammartano, S.: Speciation of phytate ion in aqueous solution. Protonation constants and copper(II) interactions in NaNO3aq at different ionic strengths. Biophys. Chem. 128, 176–184 (2007) CrossRefGoogle Scholar
  39. 39.
    Baes, C.F., Mesmer, R.E.: The Hydrolysis of Cations. Wiley, New York (1976) Google Scholar
  40. 40.
    Daniele, P.G., Foti, C., Gianguzza, A., Prenesti, E., Sammartano, S.: Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coord. Chem. Rev. 252, 1093–1107 (2008) CrossRefGoogle Scholar
  41. 41.
    De Stefano, C., Milea, D., Porcino, N., Sammartano, S.: Speciation of phytate ion in aqueous solution. Cadmium(II) interactions in NaClaq at different ionic strengths. Anal. Bioanal. Chem. 386, 346–356 (2006) CrossRefGoogle Scholar
  42. 42.
    De Stefano, C., Milea, D., Porcino, N., Sammartano, S.: Speciation of phytate ion in aqueous solution. Sequestering ability towards mercury(II) cation in NaClaq at different ionic strengths. J. Agric. Food Chem. 54, 1459–1466 (2006) CrossRefGoogle Scholar
  43. 43.
    De Stefano, C., Milea, D., Sammartano, S.: Speciation of phytate ion in aqueous solution. Dimethyltin(IV) interactions in NaClaq at different ionic strengths. Biophys. Chem. 116, 111–120 (2005) CrossRefGoogle Scholar
  44. 44.
    De Stefano, C., Milea, D., Sammartano, S.: Speciation of phytate ion in aqueous solution. Thermodynamic parameters for protonation in NaCl. Thermochim. Acta 423, 63–69 (2004) CrossRefGoogle Scholar
  45. 45.
    Clarke, E.C.W., Glew, D.N.: Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc. 62, 539–547 (1966) CrossRefGoogle Scholar
  46. 46.
    Crea, F., De Robertis, A., De Stefano, C., Sammartano, S.: Dioxouranium(VI)-carboxylate complexes. Interaction of UO22+ with 1,2,3,4,5,6-benzenehexacarboxylate (mellitate) in 0 < NaClaq < 1.0 mol L−1. J. Solution Chem. 36, 479–496 (2007) CrossRefGoogle Scholar
  47. 47.
    Sillén, L.G., Martell, A.E.: Stability Constants of Metal Ion Complexes. Special Publ. 17. The Chemical Society, Wiley, London (1964) Google Scholar
  48. 48.
    Sillén, L.G., Martell, A.E.: Stability Constants of Metal Ion Complexes. Supplement Special Publ. 25. The Chemical Society, Wiley, London (1964) Google Scholar
  49. 49.
    Pettit, D., Powell, K.: IUPAC Stability Constants Database. Academic Software, Otley (1997) Google Scholar
  50. 50.
    May, P.M., Murray, K.: Database of Chemical reactions designed to achieve thermodynamic consistency automatically. J. Chem. Eng. Data 46, 1035–1040 (2001) CrossRefGoogle Scholar
  51. 51.
    Martell, A.E., Smith, R.M., Motekaitis, R.J.: NIST Standard Reference Database 46, vers. 8, Gaithersburg (2004) Google Scholar
  52. 52.
    De Stefano, C., Milea, D., Pettignano, A., Sammartano, S.: Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media. Anal. Bioanal. Chem. 376, 1030–1040 (2003) CrossRefGoogle Scholar
  53. 53.
    Li, N., Wahlberg, O., Puigdomenech, I.: Equilibrium studies of phytate ions—Metal ion phytate complexes formed in aqueous solution; Methods and characterization of the phytate ligand. Chem. Scr. 29, 91–95 (1989) Google Scholar
  54. 54.
    Li, N., Wahlberg, O., Puigdomenech, I., Ohman, L.O.: Equilibrium studies of phytate ions. 1. Equilibria between phytate ions and protons in 3 M NaClO4 medium. Acta Chem. Scand. 43, 331–339 (1989) CrossRefGoogle Scholar
  55. 55.
    Li, N., Wahlberg, O.: Equilibrium studies of phytate ions. 2. Equilibria between phytate ions, sodium ions and protons in sodium perchlorate media. Acta Chem. Scand. 43, 401–406 (1989) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Francesco Crea
    • 1
  • Concetta De Stefano
    • 1
  • Demetrio Milea
    • 1
  • Silvio Sammartano
    • 1
  1. 1.Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica FisicaUniversità di MessinaMessina (Vill. S. Agata)Italy

Personalised recommendations