Patterns with Cold Atoms in a Square Optical Lattice

Abstract

We consider coherent dynamics of cold atoms in a square optical lattice without interference between counter-propagating laser beams. The dynamics is treated within the framework of semi-classical approximation, taking into account a coupling between the atom internal and external degrees of freedom. The corresponding set of equations of motion has been found before to be regular or chaotic in dependence on the values of the control parameters, the detuning between the atomic transition and laser frequencies, and the atom recoil frequency. In this paper, we carry out numerical experiments on spreading of cold atomic clouds in the lattice under different values of the detuning, keeping the recoil frequency to be fixed. The distributions of atoms differ strongly providing a way to control atomic transport by tuning just a single control parameter called the detuning. It is possible to drive cold atoms through different regimes of translational motion, from regular ballistic flights to chaotic walking. A possibility to observe the effect of chaotic walking in real experiments is discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms, World Scientific, Singapore (1990).

    Google Scholar 

  2. 2.

    V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms, Gordon and Breach Science Publishers, New York (1987).

    Google Scholar 

  3. 3.

    V. Letokhov, Laser Control of Atoms and Molecules, Oxford University Press, New York (2007).

    Google Scholar 

  4. 4.

    G. Grynberg and C. Robilliard, Phys. Rep., 355, 335 (2001).

    ADS  Article  Google Scholar 

  5. 5.

    A. Hemmerich, D. Schropp, Jr., and T. W. Hansch, Phys. Rev. A, 44, 1910 (1991).

    ADS  Article  Google Scholar 

  6. 6.

    G. Raithel and N. Morrow, Adv. At. Mol. Opt. Phys., 53, 187 (2006).

    ADS  Article  Google Scholar 

  7. 7.

    M. Greiner and S. Folling, Nature, 435, 736 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    M. G. Raizen, Adv. At. Mol. Opt. Phys., 41, 43 (1999).

    ADS  Article  Google Scholar 

  9. 9.

    W. K. Hensinger, N. R. Heckenberg, G. J. Milburn, and H. Rubinsztein-Dunlop, J. Opt. B: Quantum Semiclass. Opt., 5, 83 (2003).

    ADS  Article  Google Scholar 

  10. 10.

    M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, Phys. Rev. Lett., 94, 174103 (2005).

    ADS  Article  Google Scholar 

  11. 11.

    R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev. A, 45, R19 (1992).

    ADS  Article  Google Scholar 

  12. 12.

    L. E. Kon’kov and S. V. Prants, JETP Lett., 65, 833 (1997).

    ADS  Article  Google Scholar 

  13. 13.

    S. V. Prants and L. E. Kon’kov, Phys. Lett.A, 225, 33 (1997).

    ADS  Article  Google Scholar 

  14. 14.

    S. V. Prants, L. E. Kon’kov, and I. L. Kirilyuk, Phys. Rev. E, 60, 335 (1999)

    ADS  Article  Google Scholar 

  15. 15.

    S. V. Prants and L. E. Kon’kov, JETP Lett., 73, 1801 (2001).

    Article  Google Scholar 

  16. 16.

    V. Yu. Argonov and S. V. Prants, J. Exp. Theor. Phys., 96, 832 (2003).

    ADS  Article  Google Scholar 

  17. 17.

    S. V. Prants, M. Yu. Uleysky, and V. Yu. Argonov, Phys. Rev. A, 73, 023807 (2006).

    ADS  Article  Google Scholar 

  18. 18.

    V. O. Vitkovsky and S. V. Prants, Opt. Spectrosc., 114, 52 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    S. V. Prants, J. Exp. Theor. Phys., 109, 751 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    S. V. Prants, JETP Lett., 104, 749 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    S. Chu, L. Hollberg, J. E. Bjorkholm, et al., Phys. Rev. Lett., 55, 48 (1985).

    ADS  Article  Google Scholar 

  22. 22.

    F. Bardou, J. P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji, Lévy Statistics and Laser Cooling, Cambridge University Press (2002).

  23. 23.

    F. Bardou, J.P. Bouchaud, O. Emile, et al., Phys. Rev. Lett., 72, 203 (1994).

    ADS  Article  Google Scholar 

  24. 24.

    C. Jurczak, B. Desruelle, K. Sengstock, et al., Phys. Rev. Lett., 77, 1727 (1996).

    ADS  Article  Google Scholar 

  25. 25.

    H. Katori, S. Schlipf, and H. Walther, Phys. Rev. Lett., 79, 2221 (1997).

    ADS  Article  Google Scholar 

  26. 26.

    S. Marksteiner, K. Ellinger, and P. Zoller, Phys. Rev. A, 53, 3409 (1996).

    ADS  Article  Google Scholar 

  27. 27.

    V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 75, 063428 (2007).

    ADS  Article  Google Scholar 

  28. 28.

    V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 78, 043413 (2008).

    ADS  Article  Google Scholar 

  29. 29.

    S. V. Prants, J. Russ. Laser Res., 40, 213 (2019).

    Article  Google Scholar 

  30. 30.

    S. V. Prants and L. E. Kon’kov, J. Russ. Laser Res., 40, 348 (2019).

    Article  Google Scholar 

  31. 31.

    L. E. Kon’kov and S. V. Prants, J. Math. Phys., 37, 1204 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    C. S. Adams, M. Siegel, and J. Mlynek, Phys. Rep., 240, 143 (1994).

    ADS  Article  Google Scholar 

  33. 33.

    K. Baldwin, Contemp. Phys., 46, 105 (2005).

    ADS  Article  Google Scholar 

  34. 34.

    C. J. Foot, Atomic Physics, Oxford University Press, New York (2005).

    Google Scholar 

  35. 35.

    G. Reinaudi, T. Lahaye, Z. Wang, and D. Guery-Odelin, Opt. Lett., 32, 3143 (2007).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Prants.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prants, S.V., Kon’kov, L.E. Patterns with Cold Atoms in a Square Optical Lattice. J Russ Laser Res 41, 300–309 (2020). https://doi.org/10.1007/s10946-020-09879-5

Download citation

Keywords

  • cold atoms
  • square lattice
  • controlled transport
  • chaos