Skip to main content
Log in

Coherent Excitation of Optical Oscillations in a Metal Nanosphere by a 2D Electric Current

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We propose a new concept of localized surface plasmon polariton (SPP) mode excitation in a spherical nanoparticle, which utilizes a collective mechanism of dissipative instability in an adjacent 2D plasma carrying a DC electric current. We show that 2D DC current becomes unstable at optical frequencies when the drift velocity exceeds the speed of sound in the 2D plasma. Dissipative instability emerges as a result of self-consistent 2D plasma oscillations coupled to the electromagnetic modes of the nanosphere, the material of which is absorbing at given frequency (i.e., the dielectric permittivity Imε > 0), and instability is absent in the case of transparent material. We derive the dispersion equation for this dissipative instability by a self-consistent solution of the Maxwell equations for the electromagnetic modes and the hydrodynamic equations for the 2D plasma current. Our estimates demonstrate attainment of very high instability increments Imω ~ 1015 s−1, which makes the proposed concept very promising for excitation of plasmonic nanoantennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Stockman, Opt. Express, 19, 22029 (2011).

    Article  ADS  Google Scholar 

  2. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer (2007).

  3. L. Novotny and B. Hecht, Principles of Nanooptics, Cambridge University Press (2006).

  4. V. V. Klimov, Nanoplasmonics, Taylor & Francis (2013).

  5. L. Novotny and N. van Hulst, Nature Photon., 5, 83 (2011).

    Article  ADS  Google Scholar 

  6. J. Lamb and S. L. McCarthy, Phys. Rev. Lett., 37, 923 (1976).

    Article  ADS  Google Scholar 

  7. J. K. Gimzewski, B. Reihl, J. H. Coombs, and R. R. Schlittler, Z. Phys. B – Cond. Matter, 72, 497 (1988).

    Article  Google Scholar 

  8. P. Bharadwaj, A. Bouhelier, and L. Novotny, Phys. Rev. Lett., 106, 226802 (2011).

    Article  ADS  Google Scholar 

  9. T. Wang, E. Boer-Duchemin, Y. Zhang, et al., Nanotechnology, 22, 175201 (2011).

    Article  ADS  Google Scholar 

  10. M. Buret, A. V. Uskov, J. Dellinger, et al., Nano Lett., 15, 5811 (2015).

    Article  ADS  Google Scholar 

  11. J. Kern, R. Kullock, J. Prangsma, et al., Nature Photon., 9, 582 (2015).

    Article  ADS  Google Scholar 

  12. K. C. Y. Huang, M-K. Seo, T. Sarmiento, et al., Nature Photon., 8, 244 (2014).

    Article  ADS  Google Scholar 

  13. M. Parzefall, P. Bharadwaj, A. Jain, et al., Nature Nanotech., 10, 1058 (2015).

    Article  ADS  Google Scholar 

  14. H. Vardi, E. Cohen-Hoshen, G. Shalem, et al., Nano Lett., 16, 748 (2016).

    Article  ADS  Google Scholar 

  15. N. Cazier, M. Buret, A. V. Uskov, et al., Opt. Express, 24, 3873 (2016).

    Article  ADS  Google Scholar 

  16. E. Le Moal, S. Marguet, D. Canneson, et al., Phys. Rev. B, 93, 035418 (2016).

    Article  ADS  Google Scholar 

  17. T. Malinowski, H. R. Klein, M. Iazykov, and Ph. Dumas, Europhys. Lett., 114, 57002 (2016).

    Article  ADS  Google Scholar 

  18. I. V. Smetanin, A. Bouhelier, I. E. Protsenko, and A. V. Uskov, in: Proceedings of the 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials) (2016), p. 340.

  19. A. N. Oraevsky and I. V. Smetanin, JETP Lett., 62, 258 (1995).

    ADS  Google Scholar 

  20. A. N. Oraevsky and I. V. Smetanin, Laser Phys., 7, 155 (1997).

    Google Scholar 

  21. I. V. Smetanin, Nuclear Instrum. Methods Phys. Res. A, 429, 445 (1999).

    Article  ADS  Google Scholar 

  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley (1983).

  23. A. N. Oraevsky, Quantum Electron., 32, 377 (2002).

    Article  ADS  Google Scholar 

  24. A. L. Fetter, Ann. Phys., 81, 367 (1973).

    Article  ADS  Google Scholar 

  25. M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions, Natl. Bur. Stand., Washington (1964).

    MATH  Google Scholar 

  26. P. B. Johnson and R. W. Christy, Phys. Rev. B, 6, 4370 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Smetanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smetanin, I.V., Bouhelier, A. & Uskov, A.V. Coherent Excitation of Optical Oscillations in a Metal Nanosphere by a 2D Electric Current. J Russ Laser Res 39, 484–491 (2018). https://doi.org/10.1007/s10946-018-9743-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9743-z

Keywords

Navigation