Journal of Russian Laser Research

, Volume 39, Issue 4, pp 353–359 | Cite as

Infinitesimal Multimode Bargmann-State Representation*

  • Andras VukicsEmail author
  • Peter Domokos


In the Hilbert space of a light mode (harmonic oscillator), we construct a representation, in which an arbitrary state vector is expanded using Bargmann states ‖α〉 with real parameters α being in an infinitesimal vicinity of zero. The complete Hilbert-space structure is represented in the one- and multimode cases as well, making the representation able to deal with problems of continuous-variable quantum information processing.


coherent-state representation continuous-variable quantum information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Glauber, Phys. Rev., 131, 2766 (1963).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Janszky, M. Koniorczyk, and A. Gábris, Phys. Rev. A, 64, 034302 (2001).Google Scholar
  3. 3.
    A. Vukics, J. Janszky, and T. Kobayashi, Phys. Rev. A, 66, 023809 (2002).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Janszky and A. V. Vinogradov, Phys. Rev. Lett., 64, 2771 (1990).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Adam, I. Földesi, and J. Janszky, Phys. Rev. A, 49, 1281 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    J. Janszky, P. Domokos, and P. Adam, Phys. Rev. A, 48, 2213 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    S. Szabo, P. Domokos, P. Adam, and J. Janszky, Phys. Lett. A, 241, 203 (1998).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    L. Vaidman, Phys. Rev. A, 49, 1473 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett., 80, 869 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wigner Research Centre for Physics, Hungarian Academy of SciencesBudapestHungary

Personalised recommendations