Skip to main content
Log in

Temperature Diagnostics of a Z-Pinch Plasma Using Calculations of the Spectral Brightness of X-Ray Radiation in a Large Interval of Radiation Energies

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We elaborate a modern approach to the temperature diagnostics of a Z-pinch plasma. The approach is based on quantum-mechanical calculations of spectral brightness for X-ray radiation performed in a large interval of the photon energy for several temperatures and densities. In a large interval of the photon energy, a range can be found where the spectral brightness is highly sensitive to the temperature variation. This fact enables temperature diagnostics without complicated analysis of the spectral-line shape used in traditional diagnostic methods. In our calculations of the spectral brightness of X-ray radiation, we use a theoretical model known as the ion model of a plasma. We discuss important features of this model along with the other theoretical models used for calculating the radiative properties of the plasma. We calculate the spectral brightness of X-ray radiation for molybdenum plasma at temperatures of 1 and 1.2 keV and plasma densities of 1 and 2 g/cm3 and find the range of X-ray radiation energies that can be used for the temperature diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, Phys. Uspekhi, 52, 615 (2009).

    Article  ADS  Google Scholar 

  2. D. Batani, R. Dtzulian, R. Redaelli, et al., Laser Part. Beams, 25, 127 (2007).

    Article  ADS  Google Scholar 

  3. A. Bret and C. Deutsch, Laser Part. Beams, 24, 269 (2006).

    ADS  Google Scholar 

  4. S. Yu. Gus’kov, Laser Part. Beams, 23, 255 (2005).

    ADS  Google Scholar 

  5. H. Hora, Laser Part. Beams, 25, 37 (2007).

    Article  ADS  Google Scholar 

  6. T. Someya, K. Miyazawa, T. Kikuchi, and S. Kawata, Laser Part. Beams, 24, 359 (2006).

    Article  Google Scholar 

  7. O. B. Denisov, N. Yu. Orlov, S. Yu. Gus’kov, et al., Plasma Phys. Rep., 31, 684 (2005).

    Article  ADS  Google Scholar 

  8. K. V. Khishchenko and V. E. Fortov, Izv. KBSU, 4, 6 (2014).

    Google Scholar 

  9. R. S. Belikov, I. K. Krasyuk, T. Rienecker, et al., Quantum Electron., 45, 421 (2015)

    Article  ADS  Google Scholar 

  10. M. A. Kadatskiy and K. V. Khishchenko, J. Phys. Conf. Ser., 653, 012079 (2015).

    Article  ADS  Google Scholar 

  11. P. Adamek, O. Renner, L. Drska, et al., Laser Part. Beams, 24, 511 (2006).

    Article  Google Scholar 

  12. N. Yu. Orlov, S. Yu. Gus’kov, S. A. Pikuz, et al., Laser Part. Beams, 25, 1 (2007).

    Article  Google Scholar 

  13. N. Yu. Orlov, O.B. Denisov, O. N. Rosmej, et al., Laser Part. Beams, 29, 69 (2011).

    Article  ADS  Google Scholar 

  14. K. V. Khishchenko and A. A. Charakhch’yan, Plasma Phys. Rep., 41, 220 (2015).

    Article  ADS  Google Scholar 

  15. A. A. Charakhch’yan and K. V. Khishchenko, Laser Part. Beams, 33, 65 (2015).

    Article  ADS  Google Scholar 

  16. R. Feynman, N. Metropolis, and E. Teller, Phys. Rev., 75, 73 (1949).

    Article  Google Scholar 

  17. B. F. Rozsnyai, Phys. Rev. A, 5, 1137 (1972).

    Article  ADS  Google Scholar 

  18. A. F. Nikiforov and V. B. Uvarov, Bull. Siberian Branch Russ. Acad. Sci., 4, 114 (1973).

    Google Scholar 

  19. B. F. Rozsnyai, J. Quantum Spectrosc. Radiat. Transfer, 27, 211 (1982).

    Article  ADS  Google Scholar 

  20. J. Zeng, F. Jin, and J. Yuan, Front. Phys. China, 1, 468 (2006).

    Article  ADS  Google Scholar 

  21. N. March, W. Kohn, P. Vashista, et al., Theory of Inhomogeneous Electron Gas, Mir, Moscow (1987).

    Google Scholar 

  22. A. K. Radjagopal, Adv. Chem. Phys., 41, 59 (1980).

    Google Scholar 

  23. N. Yu. Orlov and V. E. Fortov, Plasma Phys. Rep., 27, 44 (2001).

    Article  ADS  Google Scholar 

  24. N. Yu. Orlov, Laser Part. Beams, 15, 627 (1997).

    Article  ADS  Google Scholar 

  25. N. Yu. Orlov, USSR Comput. Math. Math. Phys., 27, 64 (1987).

    Article  Google Scholar 

  26. S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, Fiz. Plazmy, 41, 319 (2015).

    Google Scholar 

  27. S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, Fiz. Plazmy, 41, 483 (2015).

    Google Scholar 

  28. S. B. Hansen, A. S. Shlyaptseva, S. A. Pikuz, et al., Phys. Rev. E, 70, 026402 (2004).

    Article  ADS  Google Scholar 

  29. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, Mineola, NY (2002).

    Google Scholar 

  30. I. N. Tilikin, T. A. Shelkovenko, S. A. Pikuz, and D. A. Hammer, Opt. Spektrosk., 114, 128 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Orlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, N.Y., Denisov, O.B. & Vergunova, G.A. Temperature Diagnostics of a Z-Pinch Plasma Using Calculations of the Spectral Brightness of X-Ray Radiation in a Large Interval of Radiation Energies. J Russ Laser Res 37, 91–96 (2016). https://doi.org/10.1007/s10946-016-9548-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9548-x

Keywords

Navigation