Journal of Russian Laser Research

, Volume 37, Issue 1, pp 91–96 | Cite as

Temperature Diagnostics of a Z-Pinch Plasma Using Calculations of the Spectral Brightness of X-Ray Radiation in a Large Interval of Radiation Energies

  • N. Yu. Orlov
  • O. B. Denisov
  • G. A. Vergunova


We elaborate a modern approach to the temperature diagnostics of a Z-pinch plasma. The approach is based on quantum-mechanical calculations of spectral brightness for X-ray radiation performed in a large interval of the photon energy for several temperatures and densities. In a large interval of the photon energy, a range can be found where the spectral brightness is highly sensitive to the temperature variation. This fact enables temperature diagnostics without complicated analysis of the spectral-line shape used in traditional diagnostic methods. In our calculations of the spectral brightness of X-ray radiation, we use a theoretical model known as the ion model of a plasma. We discuss important features of this model along with the other theoretical models used for calculating the radiative properties of the plasma. We calculate the spectral brightness of X-ray radiation for molybdenum plasma at temperatures of 1 and 1.2 keV and plasma densities of 1 and 2 g/cm3 and find the range of X-ray radiation energies that can be used for the temperature diagnostics.


temperature diagnostics Rosseland and Planck mean free paths 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Fortov, Phys. Uspekhi, 52, 615 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    D. Batani, R. Dtzulian, R. Redaelli, et al., Laser Part. Beams, 25, 127 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    A. Bret and C. Deutsch, Laser Part. Beams, 24, 269 (2006).ADSGoogle Scholar
  4. 4.
    S. Yu. Gus’kov, Laser Part. Beams, 23, 255 (2005).ADSGoogle Scholar
  5. 5.
    H. Hora, Laser Part. Beams, 25, 37 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    T. Someya, K. Miyazawa, T. Kikuchi, and S. Kawata, Laser Part. Beams, 24, 359 (2006).CrossRefGoogle Scholar
  7. 7.
    O. B. Denisov, N. Yu. Orlov, S. Yu. Gus’kov, et al., Plasma Phys. Rep., 31, 684 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    K. V. Khishchenko and V. E. Fortov, Izv. KBSU, 4, 6 (2014).Google Scholar
  9. 9.
    R. S. Belikov, I. K. Krasyuk, T. Rienecker, et al., Quantum Electron., 45, 421 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    M. A. Kadatskiy and K. V. Khishchenko, J. Phys. Conf. Ser., 653, 012079 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    P. Adamek, O. Renner, L. Drska, et al., Laser Part. Beams, 24, 511 (2006).CrossRefGoogle Scholar
  12. 12.
    N. Yu. Orlov, S. Yu. Gus’kov, S. A. Pikuz, et al., Laser Part. Beams, 25, 1 (2007).CrossRefGoogle Scholar
  13. 13.
    N. Yu. Orlov, O.B. Denisov, O. N. Rosmej, et al., Laser Part. Beams, 29, 69 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    K. V. Khishchenko and A. A. Charakhch’yan, Plasma Phys. Rep., 41, 220 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Charakhch’yan and K. V. Khishchenko, Laser Part. Beams, 33, 65 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    R. Feynman, N. Metropolis, and E. Teller, Phys. Rev., 75, 73 (1949).CrossRefGoogle Scholar
  17. 17.
    B. F. Rozsnyai, Phys. Rev. A, 5, 1137 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    A. F. Nikiforov and V. B. Uvarov, Bull. Siberian Branch Russ. Acad. Sci., 4, 114 (1973).Google Scholar
  19. 19.
    B. F. Rozsnyai, J. Quantum Spectrosc. Radiat. Transfer, 27, 211 (1982).ADSCrossRefGoogle Scholar
  20. 20.
    J. Zeng, F. Jin, and J. Yuan, Front. Phys. China, 1, 468 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    N. March, W. Kohn, P. Vashista, et al., Theory of Inhomogeneous Electron Gas, Mir, Moscow (1987).Google Scholar
  22. 22.
    A. K. Radjagopal, Adv. Chem. Phys., 41, 59 (1980).Google Scholar
  23. 23.
    N. Yu. Orlov and V. E. Fortov, Plasma Phys. Rep., 27, 44 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    N. Yu. Orlov, Laser Part. Beams, 15, 627 (1997).ADSCrossRefGoogle Scholar
  25. 25.
    N. Yu. Orlov, USSR Comput. Math. Math. Phys., 27, 64 (1987).CrossRefGoogle Scholar
  26. 26.
    S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, Fiz. Plazmy, 41, 319 (2015).Google Scholar
  27. 27.
    S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, Fiz. Plazmy, 41, 483 (2015).Google Scholar
  28. 28.
    S. B. Hansen, A. S. Shlyaptseva, S. A. Pikuz, et al., Phys. Rev. E, 70, 026402 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, Mineola, NY (2002).Google Scholar
  30. 30.
    I. N. Tilikin, T. A. Shelkovenko, S. A. Pikuz, and D. A. Hammer, Opt. Spektrosk., 114, 128 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. Yu. Orlov
    • 1
  • O. B. Denisov
    • 1
  • G. A. Vergunova
    • 2
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations