Skip to main content
Log in

Soliton-like solutions for the nonlinear schrödinger equation with variable quadratic hamiltonians

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We construct one-soliton solutions for the nonlinear Schr¨odinger equation with variable quadratic Hamiltonians in a unified form by taking advantage of the complete (super) integrability of generalized harmonic oscillators. The soliton-wave evolution in external fields with variable quadratic potentials is totally determined by the linear problem, like motion of a classical particle with acceleration, and the (self-similar) soliton shape is due to a subtle balance between the linear Hamiltonian (dispersion and potential) and nonlinearity in the Schr¨odinger equation by the standards of soliton theory. Most linear (hypergeometric, Bessel) and a few nonlinear (Jacobian elliptic, second Painlev´e transcendental) classical special functions of mathematical physics are linked together through these solutions, thus providing a variety of nonlinear integrable cases. Examples include bright and dark solitons and Jacobi elliptic and second Painlev´e transcendental solutions for several variable Hamiltonians that are important for research in nonlinear optics, plasma physics, and Bose–Einstein condensation. The Feshbach-resonance matter-wave-soliton management is briefly discussed from this new perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Al Khawaja, H. T. C. Stoof, R. E. Hulet, et al., Phys. Rev. Lett., 89, 200404 (2002).

    Article  ADS  Google Scholar 

  2. T. Brugarino and M. Sciacca, J. Math. Phys., 51, 093503 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  3. N. A. Kudryashov, Methods of Nonlinear Mathematical Physics [in Russian], Intellect, Dolgoprudny, Moscow Region, Russia (2010).

    Google Scholar 

  4. Z. Yan and V. V. Konotop, Phys. Rev. E, 80, 036607 (2009).

    Article  ADS  Google Scholar 

  5. V. E. Zakharov and A. B. Shabat, Zh. Éksp. Teor. Fiz., 61, 118 (1971) [Sov. Phys. JETP 34, 62 (1972)].

    Google Scholar 

  6. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys., 71, 463 (1999).

    Article  ADS  Google Scholar 

  7. L. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford University Press (2003).

  8. K. Bongs and K. Sengstock, Rep. Prog. Phys., 67, 907 (2004).

    Article  ADS  Google Scholar 

  9. Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. A, 54, R1753 (1996).

    Article  ADS  Google Scholar 

  10. Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. A, 55, R18 (1997).

    Article  ADS  Google Scholar 

  11. Yu. S. Kivshar, T. J. Alexander, and S. K. Turitsyn, Phys. Lett. A, 278, 225 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. N. Oraevsky, Quantum Electron., 31, 1038 (2001).

    Article  ADS  Google Scholar 

  13. V. M. Pérez-García, P. Torres, and G. D. Montesinos, SIAM J. Appl. Math. 67, 990 (2007).

    Google Scholar 

  14. S. Burger, K. Bongs, S. Dettmer, et al., Phys. Rev. Lett., 83 , 5198 (1999).

    Article  ADS  Google Scholar 

  15. F. S. Cataliotti, S. Burger, C. Fort, et al., Science, 293, 843 (2001).

    Article  ADS  Google Scholar 

  16. J. Denschlag, J. E. Simsarian, H. Haffner, et al., Science, 287, 97 (2000).

    Article  ADS  Google Scholar 

  17. L. Khaykovich, F. Schreck, G. Ferrari, et al., Science, 296, 1290 (2002).

    Article  ADS  Google Scholar 

  18. K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Nature, 417, 150 (2002).

    Article  ADS  Google Scholar 

  19. K. E. Strecker, G. B. Partridge, A. G. Truscott, et al., New J. Phys., 5, 73.1 (2003).

    Google Scholar 

  20. D. J. Frantzeskakis, J. Phys. A: Math. Gen., 43, 213001 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  21. V. A. Brazhnyi, V. V. Konotop, and L. P. Pitaevskii, Phys. Rev. A, 73, 053601 (2006).

    Article  ADS  Google Scholar 

  22. V. V. Konotop and L. Pitaevskii, Phys. Rev. Lett., 93, 240403 (2004).

    Article  ADS  Google Scholar 

  23. M. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and Continuous Schrödinger Systems, Cambridge University Press (2004).

  24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., Academic Press, New York (2007).

    Google Scholar 

  25. A. Desgasperis, J. Phys. A: Math. Theor., 43, 434001 (2010).

    Article  ADS  Google Scholar 

  26. A. Hasegawa, Optical Solitons in Fibers, Springer, Berlin (1989).

    Book  Google Scholar 

  27. Yu. S. Kivshar and B. Luther-Davies, Phys. Rep., 298, 81 (1998).

    Article  ADS  Google Scholar 

  28. Y. I. Kruglov, A. C. Peacock, and J. D. Harvey, Phys. Rev. Lett., 90, 113902 (2003).

    Article  ADS  Google Scholar 

  29. Y. I. Kruglov, A. C. Peacock, and J. D. Harvey, Phys. Rev. E, 71, 1056619 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  30. J. D. Moores, Opt. Lett., 21, 555 (1996).

    Article  ADS  Google Scholar 

  31. J. D. Moores, Opt. Lett., 26, 87 (2001).

    Article  ADS  Google Scholar 

  32. S. Ponomarenko and G. P. Agrawal, Opt. Lett., 32, 1659 (2007).

    Article  ADS  Google Scholar 

  33. V. N. Serkin and A. Hasegawa, Phys. Rev. Lett., 85, 4502 (2000).

    Article  ADS  Google Scholar 

  34. V. N. Serkin, A. Hasegawa, and T. L. Belyeva, Phys. Rev. Lett., 92, 199401 (2004).

    Article  ADS  Google Scholar 

  35. R. Balakrishnan, Phys. Rev. A, 32, 1144 (1985).

    Article  ADS  Google Scholar 

  36. H.-H. Chen and Ch.-Sh. Liu, Phys. Rev. Lett., 37, 693 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  37. H.-H. Chen and Ch.-Sh. Liu, Phys. Fluids, 21, 377 (1978).

    Article  ADS  MATH  Google Scholar 

  38. A. C. Newell, J. Math. Phys., 19, 1126 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. T. Xu, B. Tian, Li-Li Li, X. L¨u, and Ch. Zhang, Phys. Plasmas, 15, 102307 (2008).

    Article  ADS  Google Scholar 

  40. U. Al Khawaja, J. Math. Phys., 51, 053506 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  41. R. Conte, Phys. Lett. A, 140, 383 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  42. R. Conte, “The Painlevé approach to nonlinear ordinary differential equations,” in: R. Conte (Ed.), The Painlevé Property, One Century Later, CRM Series in Mathematical Physics, Springer, New York (1991), p. 77.

    Google Scholar 

  43. R. Conte, A. P. Fordy, and A. Pickering, Physica D, 69, 33 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. R. Conte and M. Musette, Stud. Appl. Math., 123, 63 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  45. X-G. He, D. Zhao, L. Lee, and H-G. Luo, Phys. Rev. E, 79, 056610 (2009).

    Article  ADS  Google Scholar 

  46. M. Musette and R. Conte, Physica D, 181, 70 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. J. Weiss, M. Tabor, and G. Carnevalle, J. Math. Phys., 24, 522 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. R. Hirota, Phys. Rev. Lett., 27, 1192 (1971).

    Article  ADS  MATH  Google Scholar 

  49. R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press (2004).

  50. P. D. Lax, Commun. Pure Appl. Math., 21, 467 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press (1991).

  52. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett., 31, 125 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).

    Book  MATH  Google Scholar 

  54. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, New York (1987).

    MATH  Google Scholar 

  55. C. S. Gardner, J. M. Green, M. D. Kruskai, and R. M. Miura, Phys. Rev. Lett., 19, 1095 (1967).

    Article  ADS  MATH  Google Scholar 

  56. S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Kluwer, Dordrecht (1984).

    Google Scholar 

  57. H.-H. Chen, Phys. Rev. Lett., 33, 925 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  58. A. Desgasperis, Am. J. Phys., 66, 486 (1998).

    Article  ADS  Google Scholar 

  59. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Russ. Math. Surv., 31, 59 (1976) [Integrable System: Selected Papers, London Mathematical Society Lecture Note Series (1981), vol. 60, p. 53].

  60. V. B. Matveev and M. A. Salle, Darboux Transformation and Solitons, Springer, Berlin (1991).

    Google Scholar 

  61. P. J. Olver, Applications of Lie Group to Differential Equations, Springer, Berlin (1991).

    Google Scholar 

  62. C. Rogers and W. K. Scheif, Bäcklund Transformation and Darboux Transformation, Cambridge University Press (2002).

  63. V. N. Serkin, A. Hasegawa, and T. L. Belyeva, Phys. Rev. Lett., 98, 074102 (2007).

    Article  ADS  Google Scholar 

  64. V. N. Serkin, A. Hasegawa, and T. L. Belyeva, Phys. Rev. A, 81, 023610 (2010).

    Article  ADS  Google Scholar 

  65. P. A. Clarkson, Proc. Roy. Soc. Edinburgh, 109A, 109 (1988).

    Article  MathSciNet  Google Scholar 

  66. J. He and Y. Li, Studies in Applied Mathematics (2010), doi:10.1111/j.1467-9590.2010.00495.x.

  67. A. Kundu, Phys. Rev. E, 79, 015601(R) (2009).

    Article  MathSciNet  ADS  Google Scholar 

  68. V. M. Pérez-García, P. Torres, and V. V. Konotop, Physica D, 221, 31 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. A. V. Zhukov, Phys. Lett. A, 256, 325 (1999).

    Article  ADS  Google Scholar 

  70. R. Atre, P. K. Panigrahi, and G. S. Agarwal, Phys. Rev. E., 73, 056611 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  71. A. Ebaid and S. M. Khaled, J. Comput. Appl. Math., doi:10.1016/j.cam.2010.09.024.

  72. Z. X. Liang, Z. D. Zhang, and W. M. Liu, Phys. Rev. Lett., 94, 050402 (2005).

    Article  ADS  Google Scholar 

  73. Sh. Chen and L. Yi, Phys. Rev. E, 61, 016606 (2005).

    Article  ADS  Google Scholar 

  74. N. A. Kudryashov, Commun. Nonlin. Sci. Numer. Simul., 14, 3507 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  75. O. S. Rozanova, Proc. Am. Math. Soc., 133, 2347 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  76. V. N. Serkin and A. Hasegawa, JETP Lett., 72, 89 (2000).

    Article  ADS  Google Scholar 

  77. C. Trallero-Giner, J. Drake, V. Lopez-Richard, et al., Phys. Lett. A, 354, 115 (2006).

    Article  ADS  MATH  Google Scholar 

  78. Z. Yan, Comput. Phys. Commun., 153, 145 (2003).

    Article  ADS  MATH  Google Scholar 

  79. Z. Yan, Chaos, Solitons Fractals, 21, 1013 (2004).

    Article  ADS  MATH  Google Scholar 

  80. Z. Yan, Phys. Lett. A, doi:10.1016/j.physleta.2010.09.070.

  81. T. Tao, Bull. Am. Math. Soc., 46, 1 (2009).

    Article  MATH  Google Scholar 

  82. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 8, 226 (1974).

    Article  MATH  Google Scholar 

  83. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 13, 166 (1979).

    MathSciNet  Google Scholar 

  84. X.-F. Zhang, Q. Yang, J.-F. Zhang, et al., Phys. Rev. A, 77, 023613 (2008).

    Article  ADS  Google Scholar 

  85. N. I. Akhiezer, Elements of the Theory of Elliptic Functions, Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island (1980), Vol. 79.

  86. A. Erdélyi (Ed.), Higher Transcendental Functions, McGraw-Hill (1953), vol. III.

  87. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge University Press (1952).

  88. P. A. Clarkson, “Painlevé transcendents,” in: F. W. J. Olwer and D. M. Lozier (Eds.), NIST Handbook of Mathematical Functions, Cambridge University Press (2010) [http://dlmf.nist.gov/32].

  89. M. Tajiri, J. Phys. Soc. Jpn, 52, 1908 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  90. R. Cordero-Soto, R. M. Lopez, E. Suazo, and S. K. Suslov, Lett. Math. Phys., 84, 159 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  91. R. Cordero-Soto, E. Suazo, and S. K. Suslov, Ann. Phys., 325, 1884 (2010) [arXiv:0912.4900v9 [math-ph] 19 Mar 2010].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  92. M. V. Berry, J. Phys. A: Math. Gen, 18, 15 (1985).

    Article  ADS  MATH  Google Scholar 

  93. V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Int. J. Theor. Phys., 14, 37 (1975).

    Article  MathSciNet  Google Scholar 

  94. J. H. Hannay, J. Phys. A: Math. Gen, 18, 221(1985).

    Article  MathSciNet  ADS  Google Scholar 

  95. K. B. Wolf, SIAM J. Appl. Math., 40, 419 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  96. K-H. Yeon, K-K. Lee, Ch-I. Um, et al., Phys. Rev. A, 48, 2716 (1993).

    Article  ADS  Google Scholar 

  97. E. Suazo and S. K. Suslov, “Cauchy problem for Schrödinger equation with variable quadratic Hamiltonians” (in preparation).

  98. S. K. Suslov, Phys. Scr., 81, 055006 (2010) [arXiv:1002.0144v6 [math-ph] 11 Mar 2010].

    Article  ADS  Google Scholar 

  99. V. V. Dodonov and V. I. Man’ko, “Invariants and correlated states of nonstationary quantum systems” [in Russian], Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of the Lebedev Physical Institute, Nauka, Moscow (1987), vol. 183, p. 71 [English translation published by Nova Science, Commack, New York (1989), p. 103].

  100. I. A. Malkin and V. I. Man’ko, Dynamic Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).

  101. S. K. Suslov, “On integrability of nonautonomous nonlinear Schr¨odinger equations,” Proc. Am. Math. Soc., http://dx.doi.org/10.1090/S0002-9939-2011-11176-6; Posted: December 30, 2011 [arXiv:1012.3661v3 [math-ph] 16 Apr 2011].

  102. G. V. Shlyapnikov (private communication).

  103. E. Merzbacher, Quantum Mechanics, 3 rd ed., John Wiley & Sons, New York (1998).

    Google Scholar 

  104. E. D. Rainville, Special Functions, Macmillan, New York (1960).

    MATH  Google Scholar 

  105. G. E. Andrews, R. A. Askey, and R. Roy, Special Functions, Cambridge University Press (1999).

  106. W. Magnus and S. Winkler, Hill’s Equation, Dover, New York (1966).

    MATH  Google Scholar 

  107. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Basel, Boston (1988).

    MATH  Google Scholar 

  108. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press (1944).

  109. R. Cordero-Soto, E. Suazo, and S. K. Suslov, J. Phys. Math., 1, S090603 (2009).

    Article  Google Scholar 

  110. R. Cordero-Soto and S. K. Suslov, Theor. Math. Phys., 162, 286 (2010) [arXiv:0808.3149v9 [math-ph] 8 Mar 2009].

    Article  MathSciNet  MATH  Google Scholar 

  111. P. O. Fedichev, A. E. Muryshev, and G. V. Shlyapnikov, Phys. Rev. A, 60, 3220 (1999).

    Article  ADS  Google Scholar 

  112. M. Ablowitz and H. Segur, Phys. Rev. Lett., 38, 1103 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  113. H. Segur and M. J. Ablowitz, Physica D, 3, 165 (1981).

    Article  ADS  MATH  Google Scholar 

  114. P. Deift and X. Zhou, Ann. Math., 137, 295 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  115. P. Deift and X. Zhou, Commun. Pure Appl. Math., 48, 227 (1995).

    MathSciNet  Google Scholar 

  116. A. P. Bassom, P. A. Clarkson, C. K. Law, and J. B. McLeod, Arch. Ration Mech. Anal., 103, 241 (1998).

    Article  MathSciNet  Google Scholar 

  117. P. A. Clarkson, J. Comput. Appl. Math., 153, 127(2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  118. P. A. Clarkson and J. B. McLeod, Arch. Ration Mech. Anal., 103, 97 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  119. Y. Takei, ANZIAM J., 44, 111 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  120. N. Lanfear, R. M. Lopez, and S. K. Suslov, J. Russ. Laser Res., 32, 352 (2011) [arXiv:11002.5119v1 [math-ph] 24 Feb 2011].

    Article  Google Scholar 

  121. N. Lanfear and S. K. Suslov, “The time-dependent Schrödinger equation, Riccati equation, and Airy functions,” arXiv:0903.3608v5 [math-ph] 22 Apr 2009.

  122. P. Caldirola, Nuovo Cimento, 18, 393 (1941).

    Article  Google Scholar 

  123. H. Dekker, Phys. Rep., 80, 1 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  124. E. Kanai, Prog. Theor. Phys., 3, 440 (1948).

    Article  ADS  Google Scholar 

  125. Ch-I. Um, K-H. Yeon, and T. F. George, Phys. Rep., 362, 63 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  126. M. Meiler, R. Cordero-Soto, and S. K. Suslov, J. Math. Phys., 49, 072102 (2008) [arXiv:0711.0559v4 [math-ph] 5 Dec 2007].

    Article  MathSciNet  ADS  Google Scholar 

  127. R. Cordero-Soto and S. K. Suslov, J. Phys. A: Math. Theor., 44, 015101 (2011) [arXiv:1006.3362v3 [math-ph] 2 Jul 2010].

    Article  MathSciNet  ADS  Google Scholar 

  128. D. Chruściński and J. Jurkowski, “Memory in a nonlocally damped oscillator,” arXiv:0707.1199v2 [quant-ph] 7 Dec 2007.

  129. T. S. Raju, P. K. Panigrahi, and K. Porsezian, Phys. Rev. E, 71, 026608 (2005).

    Article  ADS  Google Scholar 

  130. L. Gagnon and P. Winternitz, J. Phys. A: Math. Gen., 26, 7061 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  131. M. Musette, “Painlevé analysis for nonlinear partial differential equations,” in: R. Conte (Ed.), The Painlevé Property, One Century Later, CRM Series in Mathematical Physics, Springer, New York (1999), p. 517.

    Google Scholar 

  132. E. A. Cornell and C. E. Wieman, Rev. Mod. Phys., 74, 875 (2002).

    Article  ADS  Google Scholar 

  133. W. Ketterle, Rev. Mod. Phys., 74, 1131 (2002).

    Article  ADS  Google Scholar 

  134. L. Erdös, B. Schlein, and H.-T. Yau, Phys. Rev. Lett., 98, 040404 (2007).

    Article  ADS  Google Scholar 

  135. E. H. Lieb, R. Seiringer, and J. Yngvason, Phys. Rev. A, 61, 043602 (2000).

    Article  ADS  Google Scholar 

  136. L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A, 65, 043614 (2002).

    Article  ADS  Google Scholar 

  137. A. D. Jackson, G. M. Kavoulakis, and C. J. Pethick, Phys. Rev. A, 58, 2417 (1998).

    Article  ADS  Google Scholar 

  138. C. Menotti and S. Stringari, Phys. Rev. A, 66, 043610 (2002).

    Article  ADS  Google Scholar 

  139. A. Muñoz Mateo and V. Delgado, Phys. Rev. A, 75, 063610 (2007).

    Article  ADS  Google Scholar 

  140. A. Muñoz Mateo and V. Delgado, Phys. Rev. A, 77, 013617 (2008).

    Article  ADS  Google Scholar 

  141. A. Muñoz Mateo and V. Delgado, Ann. Phys., 324, 709 (2009).

    Article  ADS  MATH  Google Scholar 

  142. V. M. Pérez-García and H. Michinel, Phys. Rev. A, 57, 3837 (1998).

    Article  ADS  Google Scholar 

  143. F. Kh. Abdullaev, A. M. Kamchatov, V. V. Konotop, and V. A. Brazhnyi, Phys. Rev. Lett., 90, 230402 (2003).

    Article  ADS  Google Scholar 

  144. J. K. Chin, J. M. Vogels, and W. Ketterle, Phys. Rev. Lett., 90, 160405 (2003).

    Article  ADS  Google Scholar 

  145. S. L. Cornish, N. R. Claussen, J. L. Roberts, et al., Phys. Rev. Lett., 85, 1795 (2000).

    Article  ADS  Google Scholar 

  146. Ph. Courteille, R. S. Freeland, D. J. Heinzen, et al., Phys. Rev. Lett., 81, 69 (1998).

    Article  ADS  Google Scholar 

  147. P. O. Fedichev, Yu. Kagan, G. V. Shlyapnikov and J. T. M. Walraven, Phys. Rev. Lett., 77, 2913 (1996).

    Article  ADS  Google Scholar 

  148. M. Houbier, H. T. C. Stoof, W. I. McAlexander, and R. G. Hulet, Phys. Rev. A, 54, R1497 (1998).

    Article  ADS  Google Scholar 

  149. S. Inouye, M. R. Andrews, J. Stenger, et al., Nature, 392, 151 (1998).

    Article  ADS  Google Scholar 

  150. Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. Lett., 79, 2604 (1997).

    Article  ADS  Google Scholar 

  151. P. G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis, and B. A. Malomed, Phys. Rev. Lett., 90, 230401 (2003).

    Article  ADS  Google Scholar 

  152. M. Matuszewski, E. Infeld, B. A. Malomed, and M. Trippenbach, Phys. Rev. Lett., 95, 05403 (2005).

    Article  Google Scholar 

  153. A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Phys. Rev. A, 75, 4852 (1995).

    Article  ADS  Google Scholar 

  154. D. J. Papoular, G. V. Shlyapnikov, and J. Dalibard, Phys. Rev. A, 81, 041603(R) (2010).

    Article  ADS  Google Scholar 

  155. D. E. Pelinovsky, P. G. Kevrekidis, and D. J. Frantzeskakis, Phys. Rev. Lett., 91, 240201 (2003).

    Article  ADS  Google Scholar 

  156. V. M. Pérez-García, V. V. Konotop, and V. A. Brazhnyi, Phys. Rev. Lett., 92, 220403 (2004).

    Article  Google Scholar 

  157. J. L. Roberts, N. R. Claussen, J. P. Burke, Jr., et al., Phys. Rev. Lett., 81, 5109 (1998).

    Article  ADS  Google Scholar 

  158. J. Stenger, S. Inouye, M. R. Andrews, et al., Phys. Rev. Lett., 82, 2422 (1999).

    Article  ADS  Google Scholar 

  159. W. C. Stwalley, Phys. Rev. Lett., 37, 1628 (1976).

    Article  ADS  Google Scholar 

  160. E. Timmermans, P. Tommasi, M. Hussein, and A. Kerman, Phys. Rep., 315, 199 (1999).

    Article  ADS  Google Scholar 

  161. E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A, 47, 4114 (1993).

    Article  ADS  Google Scholar 

  162. K. M. O’Hara, S. L. Hemmer, S. R. Granade, et al., Phys. Rev. A, 66, 041401(R) (2002).

    Article  ADS  Google Scholar 

  163. F. D. Tappert and N. J. Zabusky, Phys. Rev. Lett., 26, 1774 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei K. Suslov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suazo, E., Suslov, S.K. Soliton-like solutions for the nonlinear schrödinger equation with variable quadratic hamiltonians. J Russ Laser Res 33, 63–83 (2012). https://doi.org/10.1007/s10946-012-9261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-012-9261-3

Keywords

Navigation