Combined absorption of light in the process of photoactivation of biosystems

  • Stanislav D. Zakharov
  • Nguyen Cong Thanh


The light-oxygen effect consists in a direct excitation of molecular oxygen dissolved in aqueous media of biosystems by the light; it provides the possibility to use lasers for therapeutic purposes. The wavelength of the used light should strictly correspond to the oxygen absorption bands. However, laser therapy also makes use of lasers emitting at 0.89 µm (outside the known oxygen bands), which suggests the action of a new photoreceptor. Here we argue that this mechanism of photoreception is a modification of the light-oxygen effect involving the absorption of photon simultaneously by the oxygen molecule and O-H stretch of the H20 molecule of liquid water.


light-oxygen effect low-level laser therapy photoexcitation spectrum singlet oxygen water vibrational modes 


  1. 1.
    B. C. Wilson and S. G. Bown, in: C. E. Webb and J. D. C. Jones (eds.), Handbook of Laser Technology, Institute of Physics Publishers, Bristol & Philadelphia (2004), Vol. 3, 2019.Google Scholar
  2. 2.
    A. S. Kriuk, V. A. Mostovnykov, I. V. Khokhlov, and N. S. Serdiuchenko, Therapeutic Efficiency of Low-Level Laser Radiation [in Russian], Nauka i Tekhnika, Minsk (1986).Google Scholar
  3. 3.
    T. Ohshiro and R. G. Calderhead, Low-Level Laser Therapy: A Practical Introduction, John Wiley & Sons, Chichester & New York (1988).Google Scholar
  4. 4.
    T. I. Karu, The Science of Low-Power Laser Therapy, Gordon & Breach Science Publishers, London (1989).Google Scholar
  5. 5.
    C. S. Foote, in: W. A. Pryor (ed.), Free Radicals in Biology, Academic Press, New York (1976), Vol. 2.Google Scholar
  6. 6.
    S. D. Zakharov and A. V. Ivanov, Quantum Electron., 29, 1031 (1999).CrossRefGoogle Scholar
  7. 7.
    S. D. Zakharov, A. V. Ivanov, E. B. Wolf, et al., Quantum Electron., 33, 149 (2003).CrossRefGoogle Scholar
  8. 8.
    S. D. Zakharov and A. V. Ivanov, Biophysics, 50, 64 (2005).Google Scholar
  9. 9.
    A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge University Press, MS (2002).Google Scholar
  10. 10.
    N. H. J. Joh, A. Min, S. Faham, et al., Nature, 453, 1266 (2008).CrossRefADSGoogle Scholar
  11. 11.
    A. L. Buchachenko, D. A. Kouznetsov, and M. A. Orlova, Proc. Natl. Acad. Sci. USA, 102, 10793 (2005).CrossRefADSGoogle Scholar
  12. 12.
    A. Ashkin, J. M. Dziedzik, and T. Yamane, Nature, 330, 769 (1987).CrossRefADSGoogle Scholar
  13. 13.
    I. A. Vorobjev, H. Liang, W. H. Wright, and M. W. Berns, Biophys. J., 64, 533 (1993).CrossRefADSGoogle Scholar
  14. 14.
    H. Liang, K. T. Vu, P. Krishnan, et al., Biophys. J., 70, 1529 (1996).ADSGoogle Scholar
  15. 15.
    K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, Nature, 337, 20 (1995).CrossRefADSGoogle Scholar
  16. 16.
    K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, Opt. Lett., 21, 1090 (1996).CrossRefADSGoogle Scholar
  17. 17.
    V. P. Danilov, B. V. Eremeev, S. D. Zakharov, et al., Izv. Ross. Akad. Nauk, Ser. Fiz., 54, 1611 (1999).Google Scholar
  18. 18.
    I. Otsuka and S. Ozeki, J. Phys. Chem. B, 110, 1509 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Chaplin, Water Structure and Science [].
  20. 20.
    S. D. Zakharov, Proceedings of the 7th International Symposium: Laser Physics and Optical Technology, The Academy of Sciences of Belarus, Minsk (2008), Vol. 3, p. 168.Google Scholar
  21. 21.
    S. D. Zakharov, B. V. Eremeev, and S. N. Perov, Sov. Phys. — Lebedev Inst. Rep., 1, 19 (1989).Google Scholar
  22. 22.
    N. Tombros, C. Jozsa, M. Popinciuc, et al., Nature, 448, 571 (2007).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of PhysicsVietnamese Academy of Sciences and TechnologiesHanoiVietnam

Personalised recommendations