Journal of Russian Laser Research

, Volume 29, Issue 5, pp 497–503 | Cite as

Luminescence instability of films and new organic light-emitting diodes based on zinc complexes with tetradentate Schiff bases: Influence of heating and laser irradiation

  • L. S. Lepnev
  • A. A. Vaschenko
  • A. G. Vitukhnovsky
  • S. V. Eliseeva
  • O. V. Kotova
  • N. P. Kuzmina


Organic light emitting diodes (OLEDs) based on zinc complexes with tetradentate Schiff bases — ZnSB [H2SB =H2Sal1, H2Sal2 (derivatives of salicylic aldehyde); H2MO1, H2MO2 (derivatives of o-vanillin)] display reversible and irreversible electroluminescence (EL) instability. The reversible instability occurs after switching voltage on and the irreversible instability produced by UV light irradiation, heating, and aging under the ambient conditions. In view of the results obtained, the first type of instability is associated with the trap filling processes and the second type appearing at heating is possibly attributed to the changes in the interface domains. Recommendations for the evaporation and capsulation conditions are provided.


organic light-emitting diodes and films zinc complexes with tetradentate Schiff bases electroluminescence photoluminescence instability laser irradiation heating degradation aging influence of ambient conditions smoothness of films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Aziz and Z. D. Popovic, Chem. Mater., 16, 4522 (2004).CrossRefGoogle Scholar
  2. 2.
    M. S. Weaver, R. C. Kwong, V. A. Adamovich, et al., J. Soc. Inform. Displ., 14, 449 (2006).CrossRefGoogle Scholar
  3. 3.
    B. D'Andrade, Nat. Photonics, 1, 33 (2007).CrossRefADSGoogle Scholar
  4. 4.
    P. E. Burrows, V. Bulovic, S. R. Forrest, et al., Appl. Phys. Lett., 65, 2922 (1994).CrossRefADSGoogle Scholar
  5. 5.
    B. W. D'Andrade, J. Esler, and J. J. Brown, Synth. Methods, 156, 405 (2006).CrossRefGoogle Scholar
  6. 6.
    R. C. Kwong, M. R. Nugent, L. Michalski, et al., Appl. Phys. Lett., 81, 162 (2002).CrossRefADSGoogle Scholar
  7. 7.
    D. Y. Kondakov, J. R. Sandifer, C. W. Tang, et al., J. Appl. Phys., 93, 1108 (2003).CrossRefADSGoogle Scholar
  8. 8.
    O. V. Kotova, S. V. Eliseeva, A. S. Averjushkin, et al., Izv. Ross. Akad. Nauk, Ser. Khim. (2008, in press).Google Scholar
  9. 9.
    D. C. Zou, M. Yahiro, and T. Tsutsui, in: Proceedings of the International Conference on Electroluminescence of Molecular Materials and Related Phenomena (Kitakyushu, Fukuoka, Japan, May 1997), Fukuoka University, Fukuoka, Japan (1997), p. 71.Google Scholar
  10. 10.
    D. Zou, Appl. Phys. Lett., 72, 2484 (1998).CrossRefADSGoogle Scholar
  11. 11.
    D. C. Zou, M. Yahiro, and T. Tsutsui, Synth. Methods, 91, 191 (1997).CrossRefGoogle Scholar
  12. 12.
    D. C. Zou, M. Yahiro, and T. Tsutsui, Jpn J. Appl. Phys., 37, L1406 (1998).CrossRefADSGoogle Scholar
  13. 13.
    S. Wang, Coord. Chem. Rev., 215, 79 (2001).CrossRefGoogle Scholar
  14. 14.
    R. C. Evans, P. Douglas, and C. J. Winscom, Coord. Chem. Rev., 250, 2093 (2006).CrossRefGoogle Scholar
  15. 15.
    A. de Bettencourt-Dias, Dalton Trans., 2229 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • L. S. Lepnev
    • 1
  • A. A. Vaschenko
    • 1
    • 2
  • A. G. Vitukhnovsky
    • 1
  • S. V. Eliseeva
    • 3
  • O. V. Kotova
    • 3
  • N. P. Kuzmina
    • 3
  1. 1.P. N. Lebedev Physical InstituteRussian Academy of ScienceMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudny, Moscow RegionRussia
  3. 3.Chemistry DepartmentM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations