Skip to main content
Log in

Genetic Analysis of Protein Translocation

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Cells in all domains of life must translocate newly synthesized proteins both across membranes and into membranes. In eukaryotes, proteins are translocated into the lumen of the ER or the ER membrane. In prokaryotes, proteins are translocated into the cytoplasmic membrane or through the membrane into the periplasm for Gram-negative bacteria or the extracellular space for Gram-positive bacteria. Much of what we know about protein translocation was learned through genetic selections and screens utilizing lacZ gene fusions in Escherichia coli. This review covers the basic principles of protein translocation and how they were discovered and developed. In particular, we discuss how lacZ gene fusions and the phenotypes conferred were exploited to identify the genes involved in protein translocation and provide insights into their mechanisms of action. These approaches, which allowed the elucidation of processes that are conserved throughout the domains of life, illustrate the power of seemingly simple experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Corey et al. [84]

Similar content being viewed by others

References

  1. Bladen HA, Mergenhagen SE (1964) Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity. J Bacteriol 88:1482–1492

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mitchell P (1961) Approaches to the analysis of specific membrane transport. In: Goodwin TW OL (ed) Biological structure and function. Academic Press, New York, pp 581–603

    Google Scholar 

  3. Glauert AM, Thornley MJ (1969) The topography of the bacterial cell wall. Annu Rev Microbiol 23:159–198. https://doi.org/10.1146/annurev.mi.23.100169.001111

    Article  CAS  PubMed  Google Scholar 

  4. Miura T, Mizushima S (1968) Separation by density gradient centrifugation of two types of membranes from spheroplast membrane of Escherichia coli K12. Biochim Biophys Acta 150(1):159–161

    Article  CAS  PubMed  Google Scholar 

  5. Schnaitman CA (1970) Protein composition of the cell wall and cytoplasmic membrane of Escherichia coli. J Bacteriol 104(2):890–901

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Osborn MJ, Gander JE, Parisi E, Carson J (1972) Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem 247(12):3962–3972

    CAS  PubMed  Google Scholar 

  7. Heppel LA (1967) Selective release of enzymes from bacteria. Science 156(3781):1451–1455

    Article  CAS  PubMed  Google Scholar 

  8. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. https://doi.org/10.1101/cshperspect.a000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189(4200):347–358

    Article  CAS  PubMed  Google Scholar 

  10. Blobel GaS DD (1971) Ribosome-membrane interaction in eukaryotic cells. In: Manson LA (ed) Biomembranes. Plenum Press, New York, pp 193–195

    Chapter  Google Scholar 

  11. Milstein C, Brownlee GG, Harrison TM, Mathews MB (1972) A possible precursor of immunoglobulin light chains. Nat New Biol 239(91):117–120

    Article  CAS  PubMed  Google Scholar 

  12. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67(3):852–862

    Article  CAS  PubMed  Google Scholar 

  13. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67(3):835–851

    Article  CAS  PubMed  Google Scholar 

  14. Inouye H, Beckwith J (1977) Synthesis and processing of an Escherichia coli alkaline phosphatase precursor in vitro. Proc Natl Acad Sci USA 74(4):1440–1444

    Article  CAS  PubMed  Google Scholar 

  15. Hazelbauer GL (1975) Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J Bacteriol 124(1):119–126

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Szmelcman S, Hofnung M (1975) Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol 124(1):112–118

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Randall-Hazelbauer L, Schwartz M (1973) Isolation of the bacteriophage lambda receptor from Escherichia coli. J Bacteriol 116(3):1436–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Payne JW, Gilvarg C (1968) Size restriction on peptide utilization in Escherichia coli. J Biol Chem 243(23):6291–6299

    CAS  PubMed  Google Scholar 

  19. Ferenci T, Boos W (1980) The role of the Escherichia coli lambda receptor in the transport of maltose and maltodextrins. J Supramol Struct 13(1):101–116. https://doi.org/10.1002/jss.400130110

    Article  CAS  PubMed  Google Scholar 

  20. Emr SD, Schwartz M, Silhavy TJ (1978) Mutations altering the cellular localization of the phage lambda receptor, an Escherichia coli outer membrane protein. Proc Natl Acad Sci USA 75(12):5802–5806

    Article  CAS  PubMed  Google Scholar 

  21. Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667. https://doi.org/10.1146/annurev.biochem.77.061606.160747

    Article  CAS  PubMed  Google Scholar 

  22. Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W (1990) The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62(4):649–657

    Article  CAS  PubMed  Google Scholar 

  23. Nishiyama K, Hanada M, Tokuda H (1994) Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J 13(14):3272–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schulze RJ, Komar J, Botte M, Allen WJ, Whitehouse S, Gold VA, Lycklama ANJA, Huard K, Berger I, Schaffitzel C, Collinson I (2014) Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Proc Natl Acad Sci USA 111(13):4844–4849. https://doi.org/10.1073/pnas.1315901111

    Article  CAS  PubMed  Google Scholar 

  25. Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, Ito K, Nureki O (2011) Structure and function of a membrane component SecDF that enhances protein export. Nature 474(7350):235–238. https://doi.org/10.1038/nature09980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuhn A, Kiefer D (2017) Membrane protein insertase YidC in bacteria and archaea. Mol Microbiol 103(4):590–594. https://doi.org/10.1111/mmi.13586

    Article  CAS  PubMed  Google Scholar 

  27. Crane JM, Randall LL (2017) The Sec System: protein export in Escherichia coli. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0002-2017

    Article  PubMed  PubMed Central  Google Scholar 

  28. Collier DN, Bankaitis VA, Weiss JB, Bassford PJ Jr (1988) The antifolding activity of SecB promotes the export of the E. coli maltose-binding protein. Cell 53(2):273–283

    Article  CAS  PubMed  Google Scholar 

  29. Ulbrandt ND, Newitt JA, Bernstein HD (1997) The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88(2):187–196

    Article  CAS  PubMed  Google Scholar 

  30. Fekkes P, van der Does C, Driessen AJ (1997) The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J 16(20):6105–6113. https://doi.org/10.1093/emboj/16.20.6105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dalbey RE, Wickner W (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 260(29):15925–15931

    CAS  PubMed  Google Scholar 

  32. Yamagata H, Taguchi N, Daishima K, Mizushima S (1983) Genetic characterization of a gene for prolipoprotein signal peptidase in Escherichia coli. Mol Gen Genet: MGG 192(1–2):10–14

    Article  CAS  PubMed  Google Scholar 

  33. Inouye S, Franceschini T, Sato M, Itakura K, Inouye M (1983) Prolipoprotein signal peptidase of Escherichia coli requires a cysteine residue at the cleavage site. EMBO J 2(1):87–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bernstein HD, Poritz MA, Strub K, Hoben PJ, Brenner S, Walter P (1989) Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature 340(6233):482–486. https://doi.org/10.1038/340482a0

    Article  CAS  PubMed  Google Scholar 

  35. Benzer S, Champe SP (1962) A change from nonsense to sense in the genetic code. Proc Natl Acad Sci USA 48:1114–1121

    Article  CAS  PubMed  Google Scholar 

  36. Crick FH, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature of the genetic code for proteins. Nature 192:1227–1232

    Article  CAS  PubMed  Google Scholar 

  37. Jacob F, Ullmann A, Monod J (1965) Deletions fusionnant loperon lactose Et Un Operon Purine Chez Escherichia Coli. J Mol Biol 13 (3):704–704&. https://doi.org/10.1016/S0022-2836(65)80137-1

    Article  CAS  Google Scholar 

  38. Beckwith JR, Signer ER, Epstein W (1966) Transposition of the Lac region of E. coli. Cold Spring Harb Symp Quant Biol 31:393–401

    Article  CAS  PubMed  Google Scholar 

  39. Casadaban MJ (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104(3):541–555

    Article  CAS  PubMed  Google Scholar 

  40. Schwartz M (1987) The maltose regulon. In: Neidhard FC (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 2. American Society for Microbiology, Washington DC, pp 1482–1502

    Google Scholar 

  41. Kellermann O, Szmelcman S (1974) Active transport of maltose in Escherichia coli K12. Eur J Biochem 47(1):139–149. https://doi.org/10.1111/j.1432-1033.1974.tb03677.x doi

    Article  CAS  PubMed  Google Scholar 

  42. Shuman HA, Silhavy TJ (1981) Identification of the malK gene product. A peripheral membrane component of the Escherichia coli maltose transport system. J Biol Chem 256(2):560–562

    CAS  PubMed  Google Scholar 

  43. Shuman HA, Silhavy TJ, Beckwith JR (1980) Labeling of proteins with beta-galactosidase by gene fusion. Identification of a cytoplasmic membrane component of the Escherichia coli maltose transport system. J Biol Chem 255(1):168–174

    CAS  PubMed  Google Scholar 

  44. Dassa E, Hofnung M (1985) Sequence of gene malG in E. coli K12: homologies between integral membrane components from binding protein-dependent transport systems. EMBO J 4(9):2287–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cole ST, Raibaud O (1986) The nucleotide sequence of the malT gene encoding the positive regulator of the Escherichia coli maltose regulon. Gene 42(2):201–208

    Article  CAS  PubMed  Google Scholar 

  46. Silhavy TJ, Shuman HA, Beckwith J, Schwartz M (1977) Use of gene fusions to study outer membrane protein localization in Escherichia coli. Proc Natl Acad Sci USA 74(12):5411–5415

    Article  CAS  PubMed  Google Scholar 

  47. Bassford P, Beckwith J (1979) Escherichia coli mutants accumulating the precursor of a secreted protein in the cytoplasm. Nature 277(5697):538–541

    Article  CAS  PubMed  Google Scholar 

  48. Davidson AL, Shuman HA, Nikaido H (1992) Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci USA 89(6):2360–2364

    Article  CAS  PubMed  Google Scholar 

  49. Schwartz M, Hofnung M (1967) La maltodextrine phosphorylase d’ Escherichia coli. Eur J Biochem 2(2):132–145. https://doi.org/10.1111/j.1432-1033.1967.tb00117.x doi

    Article  CAS  PubMed  Google Scholar 

  50. Hatfield D, Hofnung M, Schwartz M (1969) Genetic analysis of the maltose A region in Escherichia coli. J Bacteriol 98(2):559–567

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Silhavy TJ, Casadaban MJ, Shuman HA, Beckwith JR (1976) Conversion of beta-galactosidase to a membrane-bound state by gene fusion. Proc Natl Acad Sci USA 73(10):3423–3427

    Article  CAS  PubMed  Google Scholar 

  52. Froshauer S, Green GN, Boyd D, McGovern K, Beckwith J (1988) Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli. J Mol Biol 200(3):501–511

    Article  CAS  PubMed  Google Scholar 

  53. Oliver DB, Beckwith J (1981) E. coli mutant pleiotropically defective in the export of secreted proteins. Cell 25(3):765–772

    Article  CAS  PubMed  Google Scholar 

  54. Bassford PJ Jr, Silhavy TJ, Beckwith JR (1979) Use of gene fusion to study secretion of maltose-binding protein into Escherichia coli periplasm. J Bacteriol 139(1):19–31

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dwyer RS, Malinverni JC, Boyd D, Beckwith J, Silhavy TJ (2014) Folding LacZ in the periplasm of Escherichia coli. J Bacteriol 196(18):3343–3350. https://doi.org/10.1128/JB.01843-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van Stelten J, Silva F, Belin D, Silhavy TJ (2009) Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. Science 325(5941):753–756. https://doi.org/10.1126/science.1172221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Takahashi N, Gruber CC, Yang JH, Liu X, Braff D, Yashaswini CN, Bhubhanil S, Furuta Y, Andreescu S, Collins JJ, Walker GC (2017) Lethality of MalE-LacZ hybrid protein shares mechanistic attributes with oxidative component of antibiotic lethality. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1707466114

    Article  PubMed  Google Scholar 

  58. Manoil C, Beckwith J (1986) A genetic approach to analyzing membrane protein topology. Science 233(4771):1403–1408

    Article  CAS  PubMed  Google Scholar 

  59. Bardwell JC, McGovern K, Beckwith J (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67(3):581–589

    Article  CAS  PubMed  Google Scholar 

  60. Bowers CW, Lau F, Silhavy TJ (2003) Secretion of LamB-LacZ by the signal recognition particle pathway of Escherichia coli. J Bacteriol 185(19):5697–5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Emr SD, Hedgpeth J, Clement JM, Silhavy TJ, Hofnung M (1980) Sequence analysis of mutations that prevent export of lambda receptor, an Escherichia coli outer membrane protein. Nature 285(5760):82–85

    Article  CAS  PubMed  Google Scholar 

  62. Bedouelle H, Bassford PJ Jr, Fowler AV, Zabin I, Beckwith J, Hofnung M (1980) Mutations which alter the function of the signal sequence of the maltose binding protein of Escherichia coli. Nature 285(5760):78–81

    Article  CAS  PubMed  Google Scholar 

  63. Jarvik J, Botstein D (1975) Conditional-lethal mutations that suppress genetic defects in morphogenesis by altering structural proteins. Proc Natl Acad Sci USA 72(7):2738–2742

    Article  CAS  PubMed  Google Scholar 

  64. Li M, Moyle H, Susskind MM (1994) Target of the transcriptional activation function of phage lambdacI protein. Science 263(5143):75–77

    Article  CAS  PubMed  Google Scholar 

  65. Nickels BE, Dove SL, Murakami KS, Darst SA, Hochschild A (2002) Protein-protein and protein-DNA interactions of sigma70 region 4 involved in transcription activation by lambdacI. J Mol Biol 324(1):17–34

    Article  CAS  PubMed  Google Scholar 

  66. Misra R, Benson SA (1989) A novel mutation, cog, which results in production of a new porin protein (OmpG) of Escherichia coli K-12. J Bacteriol 171(8):4105–4111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Misra R, Benson SA (1988) Isolation and characterization of OmpC porin mutants with altered pore properties. J Bacteriol 170(2):528–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sampson BA, Misra R, Benson SA (1989) Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 122(3):491–501

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shuman HA, Beckwith J (1979) Escherichia coli K-12 mutants that allow transport of maltose via the beta-galactoside transport system. J Bacteriol 137(1):365–373

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Emr SD, Hanley-Way S, Silhavy TJ (1981) Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23(1):79–88

    Article  CAS  PubMed  Google Scholar 

  71. Shultz J, Silhavy TJ, Berman ML, Fiil N, Emr SD (1982) A previously unidentified gene in the spc operon of Escherichia coli K12 specifies a component of the protein export machinery. Cell 31(1):227–235

    Article  CAS  PubMed  Google Scholar 

  72. Ito K, Wittekind M, Nomura M, Shiba K, Yura T, Miura A, Nashimoto H (1983) A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins. Cell 32(3):789–797

    Article  CAS  PubMed  Google Scholar 

  73. Post LE, Arfsten AE, Davis GR, Nomura M (1980) DNA sequence of the promoter region for the alpha ribosomal protein operon in Escherichia coli. J Biol Chem 255(10):4653–4659

    CAS  PubMed  Google Scholar 

  74. Fikes JD, Bassford PJ Jr (1989) Novel secA alleles improve export of maltose-binding protein synthesized with a defective signal peptide. J Bacteriol 171(1):402–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stader J, Gansheroff LJ, Silhavy TJ (1989) New suppressors of signal-sequence mutations, prlG, are linked tightly to the secE gene of Escherichia coli. Genes Dev 3(7):1045–1052

    Article  CAS  PubMed  Google Scholar 

  76. Schatz PJ, Riggs PD, Jacq A, Fath MJ, Beckwith J (1989) The secE gene encodes an integral membrane protein required for protein export in Escherichia coli. Genes Dev 3(7):1035–1044

    Article  CAS  PubMed  Google Scholar 

  77. Bost S, Belin D (1997) prl mutations in the Escherichia coli secG gene. J Biol Chem 272(7):4087–4093

    Article  CAS  PubMed  Google Scholar 

  78. Derman AI, Puziss JW, Bassford PJ Jr, Beckwith J (1993) A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J 12(3):879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Flower AM, Doebele RC, Silhavy TJ (1994) PrlA and PrlG suppressors reduce the requirement for signal sequence recognition. J Bacteriol 176(18):5607–5614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Osborne RS, Silhavy TJ (1993) PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J 12(9):3391–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Flower AM, Osborne RS, Silhavy TJ (1995) The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE. EMBO J 14(5):884–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harris CR, Silhavy TJ (1999) Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J Bacteriol 181(11):3438–3444

    CAS  PubMed  PubMed Central  Google Scholar 

  83. van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427(6969):36–44. https://doi.org/10.1038/nature02218

    Article  CAS  PubMed  Google Scholar 

  84. Corey Robin A, Allen William J, Komar J, Masiulis S, Menzies S, Robson A, Collinson I (2016) Unlocking the bacterial SecY translocon. Structure 24(4):518–527. https://doi.org/10.1016/j.str.2016.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smith MA, Clemons WM Jr, DeMars CJ, Flower AM (2005) Modeling the effects of prl mutations on the Escherichia coli SecY complex. J Bacteriol 187(18):6454–6465. https://doi.org/10.1128/JB.187.18.6454-6465.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huie JL, Silhavy TJ (1995) Suppression of signal sequence defects and azide resistance in Escherichia coli commonly result from the same mutations in secA. J Bacteriol 177(12):3518–3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lederberg J (1950) The selection of genetic recombinations with bacterial growth inhibitors. J Bacteriol 59(2):211–215

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Schmidt M, Ding H, Ramamurthy V, Mukerji I, Oliver D (2000) Nucleotide binding activity of SecA homodimer is conformationally regulated by temperature and altered by prlD and azi mutations. J Biol Chem 275(20):15440–15448. https://doi.org/10.1074/jbc.M000605200

    Article  CAS  PubMed  Google Scholar 

  89. Oliver DB, Beckwith J (1982) Identification of a new gene (secA) and gene product involved in the secretion of envelope proteins in Escherichia coli. J Bacteriol 150(2):686–691

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kumamoto CA, Beckwith J (1983) Mutations in a new gene, secB, cause defective protein localization in Escherichia coli. J Bacteriol 154(1):253–260

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gardel C, Benson S, Hunt J, Michaelis S, Beckwith J (1987) secD, a new gene involved in protein export in Escherichia coli. J Bacteriol 169(3):1286–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oliver DB, Beckwith J (1982) Regulation of a membrane component required for protein secretion in Escherichia coli. Cell 30(1):311–319

    Article  CAS  PubMed  Google Scholar 

  93. Nakatogawa H, Murakami A, Ito K (2004) Control of SecA and SecM translation by protein secretion. Curr Opin Microbiol 7(2):145–150. https://doi.org/10.1016/j.mib.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  94. Riggs PD, Derman AI, Beckwith J (1988) A mutation affecting the regulation of a secA-lacZ fusion defines a new sec gene. Genetics 118(4):571–579

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Schatz PJ, Bieker KL, Ottemann KM, Silhavy TJ, Beckwith J (1991) One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J 10(7):1749–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Walter P, Blobel G (1982) Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299(5885):691–698

    Article  CAS  PubMed  Google Scholar 

  97. Romisch K, Webb J, Herz J, Prehn S, Frank R, Vingron M, Dobberstein B (1989) Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains. Nature 340(6233):478–482. https://doi.org/10.1038/340478a0

    Article  CAS  PubMed  Google Scholar 

  98. Hann BC, Poritz MA, Walter P (1989) Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth. J Cell Biol 109(6 Pt 2):3223–3230

    Article  CAS  PubMed  Google Scholar 

  99. Ribes V, Romisch K, Giner A, Dobberstein B, Tollervey D (1990) E. coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle. Cell 63(3):591–600

    Article  CAS  PubMed  Google Scholar 

  100. Poritz MA, Bernstein HD, Strub K, Zopf D, Wilhelm H, Walter P (1990) An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Science 250(4984):1111–1117

    Article  CAS  PubMed  Google Scholar 

  101. Phillips GJ, Silhavy TJ (1992) The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359(6397):744–746. https://doi.org/10.1038/359744a0

    Article  CAS  PubMed  Google Scholar 

  102. Brown S, Fournier MJ (1984) The 4.5 S RNA gene of Escherichia coli is essential for cell growth. J Mol Biol 178(3):533–550

    Article  CAS  PubMed  Google Scholar 

  103. Brown S (1991) 4.5S RNA: does form predict function? New Biol 3(5):430–438

    CAS  PubMed  Google Scholar 

  104. Tian H, Boyd D, Beckwith J (2000) A mutant hunt for defects in membrane protein assembly yields mutations affecting the bacterial signal recognition particle and Sec machinery. Proc Natl Acad Sci USA 97(9):4730–4735. https://doi.org/10.1073/pnas.090087297

    Article  CAS  PubMed  Google Scholar 

  105. Blobel G (2000) Protein targeting (Nobel lecture). ChemBioChem 1(2):86–102

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by National Institute of General Medical Sciences (Grant No. R35GM118024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Silhavy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silhavy, T.J., Mitchell, A.M. Genetic Analysis of Protein Translocation. Protein J 38, 217–228 (2019). https://doi.org/10.1007/s10930-019-09813-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09813-y

Keywords

Navigation