Journal of Medical Systems

, 38:140 | Cite as

Service Oriented Architecture for Clinical Decision Support: A Systematic Review and Future Directions

  • Salvador Rodriguez Loya
  • Kensaku Kawamoto
  • Chris Chatwin
  • Vojtech Huser
Transactional Processing Systems
Part of the following topical collections:
  1. Transactional Processing Systems


The use of a service-oriented architecture (SOA) has been identified as a promising approach for improving health care by facilitating reliable clinical decision support (CDS). A review of the literature through October 2013 identified 44 articles on this topic. The review suggests that SOA related technologies such as Business Process Model and Notation (BPMN) and Service Component Architecture (SCA) have not been generally adopted to impact health IT systems’ performance for better care solutions. Additionally, technologies such as Enterprise Service Bus (ESB) and architectural approaches like Service Choreography have not been generally exploited among researchers and developers. Based on the experience of other industries and our observation of the evolution of SOA, we found that the greater use of these approaches have the potential to significantly impact SOA implementations for CDS


Literature review Service oriented architecture Clinical decision support Business process management Service orientation 



VH is supported by the Intramural Research Program of the National Institutes of Health Clinical Center and the National Library of Medicine.

KK’s effort for this review was supported by the University Of Utah Department Of Biomedical Informatics. KK has in the recent past or is currently serving as a consultant on CDS to the following organizations: the U.S. Office of the National Coordinator for Health IT, Partners HealthCare, RAND Corporation, ESAC, Inc., McKesson InterQual, ARUP Laboratories, Inflexxion, Inc., and Intelligent Automation, Inc. KK receives royalties for a Duke University-owned CDS technology for infectious disease management known as CustomID that he helped develop. KK was formerly a consultant for Religent, Inc. and a co-owner and consultant for Clinica Software, Inc., both of which provide commercial CDS services. KK no longer has a financial relationship with either Religent or Clinica Software.


  1. 1.
    Erl, T., Service-Oriented Architecture Concepts, Technology, and Design. PTR, Prentice Hall, 2005.Google Scholar
  2. 2.
    Malinverno P, Plummer DC, Huizen G Van (2013) Magic Quadrant for Application Services Governance.Google Scholar
  3. 3.
    Heffner, R., and Leganza, G., SOA Adoption 2010: Still Important. Still, Strong, 2011.Google Scholar
  4. 4.
    Tesselaar H What’s SOA got to do with it. In: Bobsguide. Accessed 6 Dec 2013
  5. 5.
    Dobrescu R, Purcarea V (2012) Impact of Information Technology on the Quality of Health Services. In: Borangiu T, Thomas A, Trentesaux D (eds) Serv. Orientat. Holonic Multi-Agent Manuf. Control SE - 23. Springer Berlin Heidelberg, pp 307–319Google Scholar
  6. 6.
    Konstantinos, K., Marinos, T., and Da Cunha, P. R., SOA Implementation Critical Success Factors in Healthcare. J. Enterp. Inf. Manag. 26:343–362, 2013. doi: 10.1108/JEIM-06-2012-0036.CrossRefGoogle Scholar
  7. 7.
    Kawamoto, K., Honey, A., and Rubin, K., The HL7-OMG Healthcare Services Specification Project: Motivation, Methodology, and Deliverables for Enabling a Semantically Interoperable Service-oriented Architecture for Healthcare. J. Am. Med. Inform. Assoc. 16:874–881, 2009. doi: 10.1197/jamia.M3123.CrossRefGoogle Scholar
  8. 8.
    HL7 Health Level Seven International. Accessed 17 Jan 2014
  9. 9.
    OMG Object Magement Group. Accessed 17 Jan 2014
  10. 10.
    Canada Health Infoway Inc (2006) EHRS BluePrint an Interoperable EHR framework, Version 2Google Scholar
  11. 11.
    Osheroff, J. A., Teichc, J. M., Middletone, B., et al., A Roadmap for National Action on Clinical Decision Support. J. Am. Med. Inform. Assoc. 14:141–145, 2007. doi: 10.1197/jamia.M2334.CrossRefGoogle Scholar
  12. 12.
    Kawamoto, K., Houlihan, C. A., Balas, E. A., and Lobach, D. F., Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ 330:765, 2005. doi: 10.1136/bmj.38398.500764.8F.CrossRefGoogle Scholar
  13. 13.
    Sharma, B., Electronic Healthcare Maturity Model (eHMM): A White paper. Chennai, India, 2008.Google Scholar
  14. 14.
    Garets D, Davis M (2006) Electronic Medical Records vs . Electronic Health Records : Yes, There Is a Difference. Policy white Pap. Chicago, HIMSS Anal.Google Scholar
  15. 15.
    HIMSS Analytics Electronic Medical Record Adoption Model (EMRAM). Accessed 10 Jul 2013
  16. 16.
    Wainwright, D., and Waring, T., The information management and technology strategy of the UK National Health Service – Determining progress in the NHS acute hospital sector. Int. J. Public. Sect. Manag. 13:241–259, 2000. doi: 10.1108/09513550010346152.CrossRefGoogle Scholar
  17. 17.
    Graham, R., Mancher, M., Wolman, D. M., et al., Clinical Practice Guidelines We Can Trust. Press, National Academies, 2011.Google Scholar
  18. 18.
    Simon, S. R., Kaushal, R., Cleary, P. D., et al., Physicians and electronic health records: A statewide survey. Arch. Intern. Med. 167:507–512, 2007. doi: 10.1001/archinte.167.5.507.CrossRefGoogle Scholar
  19. 19.
    Wu, S., Chaudhry, B., Wang, J., et al., Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Ann. Intern. Med. 144:742–752, 2006.CrossRefGoogle Scholar
  20. 20.
    Sittig, D. F., Wright, A., Osheroff, J. A., et al., Grand challenges in clinical decision support. J. Biomed. Inform. 41:387–392, 2008. doi: 10.1016/j.jbi.2007.09.003.CrossRefGoogle Scholar
  21. 21.
    Kawamoto K (2007) Integration of Knowledge Resources into Applications to Enable Clinical Decision Support: Architectural Considerations. In: Greenes RA (ed) Clin. Decis. Support Road Ahead. Elsevier Academic Press, Boston, pp 503–38Google Scholar
  22. 22.
    Jahnke-Weber, J. H., Price, M., and McCallum, G., Making available Clinical Decision Support in Service-Oriented Architectures. J. Inf. Technol. Healthc. 6:42–54, 2008.Google Scholar
  23. 23.
    Wright, A., and Sittig, D. F., SANDS: A service-oriented architecture for clinical decision support in a National Health Information Network. J. Biomed. Inform. 41:962–981, 2008. doi: 10.1016/j.jbi.2008.03.001.CrossRefGoogle Scholar
  24. 24.
    Kawamoto, K., Del Fiol, G., Orton, C., and Lobach, D. F., System-agnostic clinical decision support services: benefits and challenges for scalable decision support. Open Med. Inform. J. 4:245–254, 2010. doi: 10.2174/1874431101004010245.CrossRefGoogle Scholar
  25. 25.
    Kawamoto, K., and Lobach, D. F., Proposal for Fulfilling Strategic Objectives of the U.S. Roadmap for National Action on Decision Support through a Service-oriented Architecture Leveraging HL7 Services. J. Am. Med. Inform. Assoc. 14:146–155, 2007. doi: 10.1197/jamia.M2298.CrossRefGoogle Scholar
  26. 26.
    Kitchenham B (2004) Procedures for Performing Systematic Reviews. Technical Report TR/SE-0401 and NICTA Tecnical Report 0400011T1.Google Scholar
  27. 27.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:Google Scholar
  28. 28.
    Dyba T, Dingsoyr T, Hanssen GK (2007) Applying Systematic Reviews to Diverse Study Types: An Experience Report. Empir Softw Eng Meas 2007 ESEM 2007 First Int Symp 225–234. doi:  10.1109/ESEM.2007.59
  29. 29.
    Kitchenham B, Charters S (2007) Guidelines for performing Systematic Literature Reviews in Software Engineering.Google Scholar
  30. 30.
    Burnham, J. F., Scopus database: a review. Biomed. Digit Libr. 3:1, 2006. doi: 10.1186/1742-5581-3-1.CrossRefGoogle Scholar
  31. 31.
    Arsanjani, A., Service-oriented modeling and architecture. IBM Dev. Work 1–15, 2004.Google Scholar
  32. 32.
    Bianco P, Lewis GA, Merson P, Simanta S (2011) Architecting Service-Oriented Systems, TECHNICAL NOTE CMU/SEI-2011-TN-008 Research,.Google Scholar
  33. 33.
    Charfi A, Mezini M (2004) Hybrid Web Service Composition: Business Processes Meet Business Rules. Proc. 2Nd Int. Conf. Serv. Oriented Comput. ACM, New York, NY, USA, pp 30–38Google Scholar
  34. 34.
    Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F., Service-Oriented Computing: State of the Art and Research Challenges. Computer (Long Beach Calif.) 40:38–45, 2007. doi: 10.1109/MC.2007.400.Google Scholar
  35. 35.
    Baryannis G, Danylevych O, Karastoyanova D, et al. (2010) Service Composition. In: Papazoglou M, Pohl K, Parkin M, Metzger A (eds) Serv. Res. Challenges Solut. Futur. Internet SE - 3. Springer Berlin Heidelberg, pp 55–84Google Scholar
  36. 36.
    Catley C, Petriu DC, Frize M (2004) Software performance engineering of a Web service-based clinical decision support infrastructure. Softw. Eng. Notes. USA, pp 130 – 8Google Scholar
  37. 37.
    Ciccarese, P., Caffi, E., Boiocchi, L., et al., A Guideline Management System. Med. Inf. 28–32, 2004.Google Scholar
  38. 38.
    Wang, D., Peleg, M., Tu, S. W., et al., Design and implementation of the GLIF3 guideline execution engine. J. Biomed. Inform. 37:305–318, 2004. doi: 10.1016/j.jbi.2004.06.002.CrossRefGoogle Scholar
  39. 39.
    Ram, P., Berg, D., Tu, S., et al., Executing clinical practice guidelines using the SAGE execution engine. Stud. Health Technol. Inform. 251–5, 2004.Google Scholar
  40. 40.
    Bicer, V., Kilic, O., Dogac, A., and Laleci, G. B., Archetype-Based Semantic Interoperability of Web Service Messages in the Health Care Domain. Int’l J. Semant. Web Inf. Syst. 1:1–22, 2005.CrossRefGoogle Scholar
  41. 41.
    Heard KM, Huang C, Noirot L a, et al. (2006) Using BPEL to define an executable CDS rule process. AMIA Annu. Symp. Proc. American Medical Informatics Association, p 947Google Scholar
  42. 42.
    Lobach DF, Kawamoto K, Anstrom KJ, et al. (2007) Development, Deployment and Usability of a Point-of-Care Decision Support System for Chronic Disease Management Using the Recently-Approved HL7 Decision Support Service Standard. In: Kuhn KA, Warren JR, Leong TY (eds) Medinfo 2007 Proc. 12th World Congr. Heal. pp 861–865Google Scholar
  43. 43.
    Nakamura MM, Simons WW, Samuels R, et al. (2007) Service-oriented architecture for pediatric immunization decision support. AMIA 2007 Symp. Proc. p 1056Google Scholar
  44. 44.
    Morrison, I., and Nugrahanto, S., Decision Support With BPEL and Web Services. Int. J. Healthc. Inf. Syst. Informatics 2:67–74, 2007. doi: 10.4018/jhisi.2007040105.CrossRefGoogle Scholar
  45. 45.
    Huang, Y., Noirot, L. A., Heard, K. M., et al., Migrating toward a next-generation clinical decision support application: the BJC HealthCare experience AMIA. Annu. Symp. Proc. 344–8, 2007.Google Scholar
  46. 46.
    Pires DF. F, Teixeira CAC. AC, Ruiz EES. ES d ES d, et al. (2008) A UMLS interoperable solution to support collaborative diagnosis decision making over the internet. Proc. ACM Symp. Appl. Comput. Fortaleza, Ceara, pp 1400–1404Google Scholar
  47. 47.
    Jahnke-Weber, J. H., Design of decoupled clinical decision support for service-oriented architectures. Int. J. Softw. Eng. Knowl. Eng. 19:159–183, 2009.CrossRefGoogle Scholar
  48. 48.
    Kashyap V (2009) From the Bench to the Bedside: The Role of Semantic Web and Translational Medicine for Enabling the Next Generation Healthcare Enterprise. In: Fred A, Filipe J, Gamboa H (eds) Biomed. Eng. Syst. Technol. SE - 3. Springer Berlin Heidelberg, pp 35–56Google Scholar
  49. 49.
    Zhu, V. J., Grannis, S. J., Rosenman, M. B., and Downs, S. M., Implementing broad scale childhood immunization decision support as a web service AMIA. Annu. Symp. Proc. 745–9, 2009.Google Scholar
  50. 50.
    Fdez-olivares, J., Juan, A. C., and Castillo, L., OncoTheraper : Clinical Decision Support for Oncology Therapy Planning Based on Temporal Hierarchical Tasks Networks. Knowl. Manag. Heal Care Proced. 25–41, 2009.Google Scholar
  51. 51.
    Riposan A, Taylor IJ, Rana O, et al. (2009) The TRIACS analytical workflows platform for distributed clinical decision support. 2009 22nd IEEE Int. Symp. Comput. Med. Syst. Piscataway, NJ, USA, p 8 pp. –Google Scholar
  52. 52.
    Laleci, G. B., and Dogac, A., A Semantically Enriched Clinical Guideline Model Enabling Deployment in Heterogeneous Healthcare Environments. Inf. Technol. Biomed. IEEE Trans. 13:263–273, 2009. doi: 10.1109/TITB.2008.2010542.CrossRefGoogle Scholar
  53. 53.
    Kameas A, Calemis I (2010) Pervasive Systems in Health Care. In: Nakashima H, Aghajan H, Augusto J (eds) Handb. Ambient Intell. Smart Environ. SE - 12. Springer US, pp 315–346Google Scholar
  54. 54.
    Hatsek, A., Shahar, Y., Taieb-Maimon, M., et al., A scalable architecture for incremental specification and maintenance of procedural and declarative clinical decision-support knowledge. Open. Med. Inform. J. 4:255–277, 2010. doi: 10.2174/1874431101004010255.CrossRefGoogle Scholar
  55. 55.
    Acosta DD., Patkar VV., Keshtgar MM., Fox J. J (2010) Challenges in delivering decision support systems: The MATE experience. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 5943 LNAI:124–140. doi:  10.1007/978-3-642-11808-1_11
  56. 56.
    Del Fiol, G., Kawamoto, K., Lapointe, N. M. A., et al., Improving Medication Adherence in a Regional Healthcare Information Exchange using a Scalable, Claims-Driven, and Service-Oriented Approach AMIA. Annu. Symp. Proc. 137–141, 2010.Google Scholar
  57. 57.
    Kim JA, Shim, Kim S, et al. (2011) Implementation of Guideline-Based CDSS. Proc. 2011 Int. Conf. Ubiquitious Comput. Multimed. Appl. (UCMA 2011). Los Alamitos, CA, USA, pp 96 – 9Google Scholar
  58. 58.
    Kim JA, Shim, Kim S, et al. (2011) Implementation of Guideline-Based CDSS. Proc. 2011 Int. Conf. Ubiquitious Comput. Multimed. Appl. (UCMA 2011). Los Alamitos, CA, USA, pp 96 – 9Google Scholar
  59. 59.
    Fehre, K., and Adlassnig, K. P., Service-Oriented Arden-Sysntax-Based Clinical Decision Support. In: Schreier, G., Hayn, D., and Ammenwerth, E. (Eds.), Ehealth 2011 Heal. Informatics Meets Ehealth Von Der Wiss, Zur Anwendung Und Zurueck Grenzen Uberwinden. Contin. Care, pp. 123–128, 2011.Google Scholar
  60. 60.
    Huser, V., Rasmussen, L. V., Oberg, R., and Starren, J. B., Implementation of workflow engine technology to deliver basic clinical decision support functionality. BMC Med. Res. Methodol. 11:43, 2011. doi: 10.1186/1471-2288-11-43.CrossRefGoogle Scholar
  61. 61.
    Kamaleswaran R, McGregor C (2012) CBPsp: Complex business processes for stream processing. 2012 25th IEEE Can. Conf. Electr. Comput. Eng. Vis. a Greener Futur. CCECE 2012Google Scholar
  62. 62.
    Kawamoto, K., Jacobs, J., Welch, B. M., et al., Clinical information system services and capabilities desired for scalable, standards-based, service-oriented decision support: consensus assessment of the Health Level 7 clinical decision support Work Group AMIA. Annu. Symp. Proc. 446–55, 2012.Google Scholar
  63. 63.
    Mouttham, A., Kuziemsky, C., Langayan, D., et al., Interoperable support for collaborative, mobile, and accessible health care. Inf. Syst. Front. 14:73–85, 2012. doi: 10.1007/s10796-011-9296-y.CrossRefGoogle Scholar
  64. 64.
    Cucino R, Eccher C (2012) Modeling Healthcare Processes in BPEL: A Colon Cancer Screening Case Study. In: Szomszor M, Kostkova P (eds) Electron. Healthc. SE - 10. Springer Berlin Heidelberg, pp 78–85Google Scholar
  65. 65.
    Paterno, M. D., Goldberg, H. S., Simonaitis, L., et al., Using a service oriented architecture approach to clinical decision support: performance results from two CDS Consortium demonstrations AMIA. Annu. Symp. Proc. 690–698, 2012.Google Scholar
  66. 66.
    Hussain, M., Khattak, A. M., Khan, W. A., et al., Cloud-based Smart CDSS for chronic diseases. Health Technol. (Berl) 3:153–175, 2013. doi: 10.1007/s12553-013-0051-x.CrossRefGoogle Scholar
  67. 67.
    Papazoglou M (2007) What’s in a Service? In: Oquendo F (ed) Softw. Archit. SE - 3. Springer Berlin Heidelberg, pp 11–28Google Scholar
  68. 68.
    Sartipi K, Yarmand MH, Down DG (2007) Mined-knowledge and decision support services in electronic health. Proc. - ICSE 2007 Work. Int. Work. Syst. Dev. SOA Environ. SDSOA’07Google Scholar
  69. 69.
    Bossche B Van Den, Hoecke S Van, Danneels C, et al. (2008) Design of a {JAIN} SLEE/ESB-based platform for routing medical data in the {ICU}. Comput Methods Programs Biomed 91:265–277. doi: Scholar
  70. 70.
    Bossche B Van Den, Hoecke S Van, Danneels C, et al. (2008) Design of a {JAIN} SLEE/ESB-based platform for routing medical data in the {ICU}. Comput Methods Programs Biomed 91:265–277. doi: 10.1016/j.cmpb.2008.05.003
  71. 71.
    Steurbaut, K., Colpaert, K., Gadeyne, B., et al., COSARA: Integrated Service Platform for Infection Surveillance and Antibiotic Management in the ICU. J. Med. Syst. 36:3765–3775, 2012. doi: 10.1007/s10916-012-9849-8.CrossRefGoogle Scholar
  72. 72.
    Benharref A, Serhani M (2013) Novel Cloud and SOA Based Framework for E-health Monitoring Using Wireless Biosensors. Biomed Heal Informatics, IEEE J PP:1. doi:  10.1109/JBHI.2013.2262659
  73. 73.
    Martínez-García A, Moreno-Conde A, Jódar-Sánchez F, et al. (2013) Sharing clinical decisions for multimorbidity case management using social network and open-source tools. J Biomed Inform -. doi: 10.1016/j.jbi.2013.06.007
  74. 74.
    Peleg, M., Tu, S., Bury, J., et al., Comparing Computer-interpretable Guideline Models: A Case-study Approach. J. Am. Med. Inform. Assoc. 10:52–68, 2003.CrossRefGoogle Scholar
  75. 75.
    Boyer J, Mili H (2011) Agile Business Rule Development. Process, Architecture, and JRules Examples. 251–257. doi: 10.1007/978-3-642-19041-4Google Scholar
  76. 76.
    Besana P, Patkar V, Glasspool D, Robertson D (2008) Distributed Workflows: The OpenKnowledge Experience. In: Meersman R, Tari Z, Herrero P (eds) Move to Meaningful Internet Syst. OTM 2008 Work. SE - 123. Springer Berlin Heidelberg, pp 965–975Google Scholar
  77. 77.
    Besana, P., Patkar, V., Barker, A., et al., Sharing Choreographies in OpenKnowledge: A Novel Approach to Interoperability. J. Softw. 4:833–842, 2009. doi: 10.4304/jsw.4.8.833-842.CrossRefGoogle Scholar
  78. 78.
    W3C Web Services Choreography Description Language, Version 1.0, W3C Candidate Recommendation, 9 November 2005.
  79. 79.
    Health Level 7 HL7 Virtual Medical Record (vMR). Accessed 3 Jun 2013
  80. 80.
    De Clercq PA, Blom JA, Korsten HHM, Hasman A (2004) Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif Intell Med 31:1–27. doi: 10.1016/j.artmed.2004.02.003
  81. 81.
    Isern D, Moreno A (2008) Computer-based execution of clinical guidelines: A review. Int J Med Inform 77:787–808. doi: 10.1016/j.ijmedinf.2008.05.010
  82. 82.
    OASIS OASIS WS-BPEL Extension for People (BPEL4People) TC. Accessed 21 Jan 2014
  83. 83.
    Pontes Guimaraes F, Kuroda EH, Batista DM (2012) Performance Evaluation of Choreographies and Orchestrations with a New Simulator for Service Compositions. Comput Aided Model Des Commun Links Networks (CAMAD), 2012 I.E. 17th Int Work 140–144. doi:  10.1109/CAMAD.2012.6335315
  84. 84.
    OASIS Service Component Architecture Assembly Model Specification, Version 1.1, Committee Specification Draft 08 /Public Review Draft 03 31 May 2011. Accessed 22 Jun 2013
  85. 85.
    Hinchey, M., and Coyle, L., Conquering Complexity. Springer, London, 2012.CrossRefGoogle Scholar
  86. 86.
    The Apache Software Foundation Apache Tuscany. Accessed 28 Dec 2013
  87. 87.
    Fabric3 Fabric3. Accessed 28 Dec 2013
  88. 88.
    OW2 Consortium FraSCAti. Accessed 28 Dec 2913
  89. 89.
    Red Hat Inc. SwitchYard. Accessed 28 Dec 2013
  90. 90.
    OMG Business process model and notation (BPMN 2.0). Accessed 31 May 2013
  91. 91.
    Chinosi, M., and Trombetta, A., BPMN: An introduction to the standard. Comput. Stand Interfaces 34:124–134, 2012. doi: 10.1016/j.csi.2011.06.002.CrossRefGoogle Scholar
  92. 92.
    Papazoglou, M. P., and Heuvel, W.-J., Service oriented architectures: approaches, technologies and research issues. VLDB J. 16:389–415, 2007. doi: 10.1007/s00778-007-0044-3.CrossRefGoogle Scholar
  93. 93.
    Safy FZ, El-Ramly M, Salah A (2013) Runtime Monitoring of SOA Applications: Importance, Implementations and Challenges. Serv Oriented Syst Eng (SOSE), 2013 I.E. 7th Int Symp 315–319. doi:  10.1109/SOSE.2013.61

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Salvador Rodriguez Loya
    • 1
  • Kensaku Kawamoto
    • 2
  • Chris Chatwin
    • 1
  • Vojtech Huser
    • 3
  1. 1.School of Engineering and InformaticsUniversity of SussexBrightonUK
  2. 2.Department of Biomedical InformaticsUniversity of UtahSalt Lake CityUSA
  3. 3.National Institutes of HealthClinical CenterBethesdaUSA

Personalised recommendations