Advertisement

Journal of Medical Systems

, Volume 35, Issue 4, pp 545–554 | Cite as

Measuring Technical Efficiency in Primary Health Care: The Effect of Exogenous Variables on Results

  • José Manuel Cordero-Ferrera
  • Eva Crespo-Cebada
  • Luis R. Murillo-Zamorano
Original Paper

Abstract

The aim of this paper is to extend the existing literature about efficiency measurement in primary health care with the application of a recently developed method to deal with exogenous variables. In this context, these variables are represented by the main characteristics of the covered population. The use of this technique allows calculating more accurate efficiency scores that can reflect the performance of units more properly. Our results show that the inclusion of these variables in the evaluation has a great impact on both the values of efficiency scores and the rank of units. This analysis has been carried out using a great amount of data available about primary health care centers in the Spainsh region of Extremadura.

Keywords

Efficiency DEA Primary Health Care Exogenous Variables 

Notes

Acknowledgments

The authors are most grateful to the Consejeria de Sanidad y Dependencia of the Junta de Extremadura for its financial and data availability support. We also thank Carmelo Petraglia for his helpful assistance in preparing the data set used in the research and to three anonymous referes por for their comments and suggestions.

References

  1. 1.
    Nunamaker, T. R., Measuring routine nursing service efficiency: A comparison of cost per patient day and data envelopment analysis models. Health Serv. Res. 18:183–205, 1983.Google Scholar
  2. 2.
    Hollingsworth, B., and Street, A., The market for efficiency analysis of health care organizations. Health Econ. 15:1055–1059, 2006.CrossRefGoogle Scholar
  3. 3.
    Worthington, A. C., Frontier efficiency measurement in health care: a review of empirical techniques and selected applications. Med. Care Res. Rev. 61 (2)135–170, 2004.CrossRefGoogle Scholar
  4. 4.
    Chilingerian, J. A., and Sherman, H., Health care applications: From hospitals to physicians, from productive efficiency to quality Frontiers. In: Cooper, W. W., Seiford, L. M., and Zhu, J. (Eds.), Handbook on Data Envelopment AnalysisKluwer, London, pp. 481–537, 2004.Google Scholar
  5. 5.
    Seinmann, L., Dittrich, G., Karmann, A., and Zweifel, P., Measuring and comparing the (in)efficiency of German and Swiss hospitals. Eur. J. Health Econ. 5:216–226, 2004.CrossRefGoogle Scholar
  6. 6.
    Puig-Junoy, J., Eficiencia en la Atención Primaria de Salud: Una revisión crítica de las medidas frontera. Rev. Esp. Salud Púb. 74:483–495, 2000.Google Scholar
  7. 7.
    Amado, C. A., and Dyson, R. G., On comparing the performance of primary care providers. Eur. J. Oper. Res. 185:915–932, 2008.MATHCrossRefGoogle Scholar
  8. 8.
    Murillo-Zamorano, L. R., Economic efficiency and frontier techniques. J. Econ. Surv. 18 (1)33–77, 2004.CrossRefGoogle Scholar
  9. 9.
    Chilingerian, J. A., Evaluating physician efficiency in hospitals: a multivariate analysis of best practice. Eur. J. Oper. Res. 80:548–574, 1995.MATHCrossRefGoogle Scholar
  10. 10.
    Rosko, M. D., Impact of internal and external environmental pressures on hospital inefficiency. Health Care Manag. Sci. 2:63–74, 1999.CrossRefGoogle Scholar
  11. 11.
    Kontodimopoulos, N., Moschovakis, G., Aletras, V., and Niakas, D., The effect of environmental factors on technical and scale efficiency of primary health care providers in Greece. Cost Eff. Resour. Alloc. 5:14, 2007. doi: 10.1186/1478-7547-5-14.CrossRefGoogle Scholar
  12. 12.
    Fried, H. O., and Lovell, C. A. K., Searching for the Zeds, paper presented in the second Georgia Productivity Workshop, 1996.Google Scholar
  13. 13.
    Muñiz, M., Separating managerial inefficiency and external conditions in data. Eur. J. Oper. Res. 149-3:625–643, 2002.CrossRefGoogle Scholar
  14. 14.
    Huang, Y.-G. L., and McLaughlin, C. P., Relative efficiency in rural primary health care: An application of data envelopment analysis. Health Serv. Res. 24 (2)143–158, 1989.Google Scholar
  15. 15.
    Szczepura, A., Davies, A., Fletcher, C., and Boussofiane, A., Efficiency and effectiveness in general practice. J. Manag. Med. 7 (5)36–47, 1993.CrossRefGoogle Scholar
  16. 16.
    Bates, J., Baines, D., and Whynes, D., Measuring the efficiency of prescribing by general practitioners. J. Oper. Res. Soc. 47:1443–1451, 1996.MATHGoogle Scholar
  17. 17.
    Giuffrida, A., Productivity, efficiency changes in primary care: a Malmquist index approach. Health Care Manage. Sci. 2:11–26, 1999.CrossRefGoogle Scholar
  18. 18.
    Hollingsworth, B., Dawson, P. J., and Maniadakis, N., Efficiency measurement of health care: A review of non-parametric methods and applications. Health Care Manage. Sci. 2:161–172, 1999.CrossRefGoogle Scholar
  19. 19.
    Pina, V., and Torres, L., Evaluating the efficiency of non-profit organizations: An application of data envelopment analysis to the public health services. Financ. Account. Manag. 8:213–225, 1992.CrossRefGoogle Scholar
  20. 20.
    Chilingerian, J., and Sherman, H., Benchmarking physician practice patterns with DEA: A multi-stage approach for cost containment. Ann. Oper. Res. 67:83–116, 1996.CrossRefGoogle Scholar
  21. 21.
    Chilingerian, J., and Sherman, H., DEA and primary care physicians report cards: Deriving preferred practice cones from managed care service concepts and operating strategies. Ann. Oper. Res. 73:35–66, 1997.MATHCrossRefGoogle Scholar
  22. 22.
    Ozcan, Y. A., Physician benchmarking: Measuring variation in practice behavior in treatment of otitis media. Health Care Manage. Sci. 1:5–17, 1998.CrossRefGoogle Scholar
  23. 23.
    Goñi, S., An analysis of the effectiveness of the Spanish primary health care teams. Health Policy. 48:107–117, 1999.CrossRefGoogle Scholar
  24. 24.
    Salinas-Jiménez, J., and Smith, P. C., Data envelopment analysis applied to quality in primary health care. Ann. Oper. Res. 67:141–161, 1996.CrossRefGoogle Scholar
  25. 25.
    García, F., Marcuello, C., Serrano, D., and Urbina, O., Evaluation of efficiency in primary healt care centres: an application of data envelopment analysis. Financ. Account. Manag. 15 (1)67–83, 1999.CrossRefGoogle Scholar
  26. 26.
    Rosenman, R., and Friesner, D., Scope and scale efficiencies in physician practices. Health Econ. 13:1091–1116, 2004.CrossRefGoogle Scholar
  27. 27.
    Puig-Junoy, J., and Ortún, V., Cost efficiency in primary care contracting: a stochastic frontier cost function approach. Health Econ. 13:1149–1165, 2004.CrossRefGoogle Scholar
  28. 28.
    Schmacker, E. R., and McKay, N. L., Factors affecting productive efficiency in primary care clinics. Health Serv. Manage. Res. 21:60–70, 2008.CrossRefGoogle Scholar
  29. 29.
    Murillo, L. R., and Petraglia, C., Technical efficiency in primary health care: does quality matter?”, Working paper #10725, MPRA, University Library of Munich, 2008.Google Scholar
  30. 30.
    Morita, H., Analysis of economies of scope by data envelopment analysis: Comparison of efficient frontiers. Int. Trans. Oper. Res. 10:393–402, 2003.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Charnes, A., Cooper, W. W., and Rhodes, E., Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (6)429–444, 1978.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Banker, R. D., Charnes, A., and Cooper, W. W., Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science. 30 (9)1078–1092, 1984.MATHCrossRefGoogle Scholar
  33. 33.
    Seiford, L. M., and Thrall, R. M., Recent Developments in DEA: the mathematical programming approach to Frontier analysis. J. Econom. 46 (1/2)7–38, 1990.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Charnes, A., Cooper, W. W., Lewin, A. Y., and Seiford, L. M., Data envelopment analysis: theory, methodology and applications. Kluwer, New York, 1994.MATHGoogle Scholar
  35. 35.
    Cooper, W. W., Seiford, L. M. and Tone, K., Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. Kluwer: New York.Google Scholar
  36. 36.
    Thanassoulis, E., Introduction to the theory and application of data envelopment analysis. Kluwer, Dordrecht, 2001.Google Scholar
  37. 37.
    Emrouznejad, A., Parker, B. R., and Tavares, G., Evaluation of research on efficiency and productivity: a survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Econ. Plann. Sci. 42 (3)151–157, 2008.CrossRefGoogle Scholar
  38. 38.
    Hoff, A., Second stage DEA: Comparison of approaches for modelling the DEA score. Eur. J. Oper. Res. 181:425–435, 2007.MATHCrossRefGoogle Scholar
  39. 39.
    Banker, R., and Natarajan, R., Evaluating contextual variables affecting productivity using data envelopment analysis. Oper. Res. 56 (1)48–58, 2008.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    McDonald, J., Using least squares and tobit in second stage DEA analyses. Eur. J. Oper. Res. 197:792–798, 2009.MATHCrossRefGoogle Scholar
  41. 41.
    Banker, R. D., and Morey, R. C., Efficiency analysis for exogenously fixed inputs and outputs. Oper. Res. 34 (4)513–521, 2008.CrossRefGoogle Scholar
  42. 42.
    Golany, B., and Roll, Y., Some extensions of techniques to handle non-discretionary factors in data envelopment analysis. J. Prod. Anal. 4:419–432, 1993.CrossRefGoogle Scholar
  43. 43.
    Tofallis, C., Combining two approaches to efficiency assessment. J. Oper. Res. Soc. 52:1225–1231, 2001.MATHCrossRefGoogle Scholar
  44. 44.
    Ray, S. C., Resource use efficiency in public schools: A study of Connecticut data. Manag. Sci. 37 (12)1620–1628, 1991.MATHCrossRefGoogle Scholar
  45. 45.
    Afonso, A., and St. Aubyn, M., Cross-country efficiency of secondary education provision: a semi-parametric analysis with non-discretionary inputs. Econ. Model. 23(3):476–491, 2006.Google Scholar
  46. 46.
    Prado, J. M., and García-Sánchez, I., Efficiency evaluation in municipal services. an application to the street lighting service in Spain. J. Prod. Anal. 27:149–162, 2007.CrossRefGoogle Scholar
  47. 47.
    Ruggiero, J., Non-discretionary inputs in data envelopment analysis. Eur. J. Oper. Res. 111:461–469, 1998.MATHCrossRefGoogle Scholar
  48. 48.
    Fried, H., Schmidt, S., and Yaisawarng, S., Incorporating the operating environment into a nonparametric measure of technical efficiency. J. Prod. Anal. 12:249–267, 1999.CrossRefGoogle Scholar
  49. 49.
    Fried, H., Lovell, C. A. K., Schmidt, S., and Yaisawarng, S., Accounting for environmental effects and statistical noise in data envelopment analysis. J. Prod. Anal. 17:157–174, 2002.CrossRefGoogle Scholar
  50. 50.
    Muñiz, M., Paradi, J., Ruggiero, J., and Yang, Z., Evaluating alternative DEA models used to control for non-discretionary inputs. Comput. Oper. Res. 33:1173–1183, 2006.MATHCrossRefGoogle Scholar
  51. 51.
    Cordero, J. M., Pedraja, F., and Santin, D., Alternative approaches to include exogenous variables in DEA measures: A comparison using Monte Carlo. Comput. Oper. Res. 36:2699–2706, 2009.MATHCrossRefGoogle Scholar
  52. 52.
    Cordero, J. M., Pedraja, F., and Salinas, J., Measuring efficiency in education: An analysis of different approaches for incorporating non-discretionary inputs. Appl. Econ. 40 (10)1323–1339, 2008.CrossRefGoogle Scholar
  53. 53.
    Simar, L., and Wilson, P., Estimation and inference in two-stage, semi parametric models of production processes. J. Econ. 136:31–64, 2007.MathSciNetGoogle Scholar
  54. 54.
    Vega-Cervera, J. A., Murillo-Zamorano, L. R., DeMiguel, F., Morillo, J., and Rivero, M., Un sistema integrado de información para la atención primaria en Extremadura. Consejería de Sanidad y Consumo, Junta de Extremadura, 2007.Google Scholar
  55. 55.
    Hollingsworth, B., and Smith, P., Use of ratios in data envelopment analysis. Appl. Econ. Lett. 10:733–735, 2003.CrossRefGoogle Scholar
  56. 56.
    Torgersen, A. M., Forsund, F. R., and Kittelsen, S. A. C., Slack-adjusted efficiency measures and ranking of efficient unit. J. Prod. Anal. 7 (4)379–398, 1996.CrossRefGoogle Scholar
  57. 57.
    Emrouznejad, A., and Amin, G. R., DEA models for ratio data: Convexity consideration. Appl. Math. Model. 33 (1)486–498, 2009.MATHCrossRefGoogle Scholar
  58. 58.
    Coelli, T., A guide to DEAP Version 2.1: A data envelopment analysis (computer) program”, CEPA Working Paper 96/08, Australia: University of New England, 1996.Google Scholar
  59. 59.
    Coelli, T., A Multi-stage methodology for the solution of orientated DEA Models. Oper. Res. Lett. 23:143–149, 1998.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • José Manuel Cordero-Ferrera
    • 1
  • Eva Crespo-Cebada
    • 1
  • Luis R. Murillo-Zamorano
    • 1
  1. 1.University of ExtremaduraBadajozSpain

Personalised recommendations