Skip to main content
Log in

A Fixed Mesh Method with Immersed Finite Elements for Solving Interface Inverse Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new fixed mesh method for solving a class of interface inverse problems for the typical elliptic interface problems. These interface inverse problems are formulated as shape optimization problems. By an immersed finite element (IFE) method, both the governing partial differential equations and the objective functional for an interface inverse problem are discretized optimally regardless of the location of the interface in a chosen mesh, and the shape optimization for recovering the interface is reduced to a constrained optimization problem. The formula for the gradient of the objective function in this constrained optimization is derived and this formula can be implemented efficiently in the IFE framework. As demonstrated by three representative applications, the proposed IFE method can be employed to solve a spectrum of interface inverse problems efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adjerid, S., Chaabane, N., Lin, T.: An immersed discontinuous finite element method for stokes interface problems. Comput. Methods Appl. Mech. Eng. 293, 170–190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adjerid, S., Guo, R., Lin, T.: High degree immersed finite element spaces by a least squares method. Int. J. Numer. Anal. Model. 14(4–5), 604–626 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Alessandrini, G., Isakov, V., Powell, J.: Local uniqueness in the inverse conductivity problem with one measurement. Trans. Am. Math. Soc. 347(8), 3031–3041 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire, G., Dapogny, C., Frey, P.: Shape optimization with a level set based mesh evolution method. Comput. Methods Appl. Mech. Eng. 282, 22–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Attetkov, A.V., Volkov, I.K., Tverskaya, E.S.: The optimum thickness of a cooled coated wall exposed to local pulseperiodic heating. J. Eng. Phys. Thermophys. 74(6), 1467–1474 (2001)

    Article  Google Scholar 

  7. Babuška, I., Osborn, J.E.: Can a Finite element method perform arbitrarily badly? Math. Comput. 69(230), 443–462 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bai, J., Cao, Y., He, X., Liu, H., Yang, X.: Modeling and an immersed finite element method for an interface wave equation. Comput. Math. Appl. 76(7), 1625–1638 (2018)

    Article  MathSciNet  Google Scholar 

  9. Bejan, A.: Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transf. 40(4), 799813–811816 (1997)

    Article  Google Scholar 

  10. Belhachmi, Z., Meftahi, H.: Shape sensitivity analysis for an interface problem via minimax differentiability. Appl. Math. Comput. 219(12), 6828 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Bendsøe, M.P.: Optimization of Structural Topology, Shape, and Material. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  12. Brenner, S.C., Ridgway Scott, L.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts Applied Mathematics, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  13. Burger, M., Osher, S.J.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16(2), 263–301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Calderón, A.P.: On an inverse boundary value problem. Comput. Appl. Math. 25(2–3), 133–138 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Cantarero, A., Goldstein, T.: A fast method for interface and parameter estimation in linear elliptic PDES with piecewise constant coefficients (2013). ftp://ftp.math.ucla.edu/pub/camreport/cam11-77.pdf

  16. Carpentieri, G., Koren, B., van Tooren, M.J.L.: Adjoint-based aerodynamic shape optimization on unstructured meshes. J. Comput. Phys. 224(1), 267–287 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chan, T.F., Tai, X.-C.: Identification of discontinuous coefficients in elliptic problems using total variation regularization. SIAM J. Sci. Comput. 25(3), 881–904 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Z., Wu, Z., Xiao, Y.: An adaptive immersed finite element method with arbitrary lagrangian-eulerian scheme for parabolic equations in time variable domains. Int. J. Numer. Anal. Mod. 12(3), 567–591 (2015)

    MathSciNet  Google Scholar 

  19. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, Z., Zou, J.: An augmented lagrangian method for identifying discontinuous parameters in elliptic systems. SIAM J. Control Optim. 37(3), 892–910 (1999)

  21. Choi, K.K., Chang, K.-H.: A study of design velocity field computation for shape optimal design. Finite Elem. Anal. Des. 15(4), 317–341 (1994)

    Article  MATH  Google Scholar 

  22. Chow, S., Anderssen, R.S.: Determination of the transmissivity zonation using a linear functional strateg. Inverse Probl. 7, 841 (1991)

    Article  MATH  Google Scholar 

  23. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Volume 16 of Classics Applied Mathematics. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  24. Dunning, P.D., Kim, H.A., Mullineux, G.: Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid fem and structural optimization. Finite Elem. Anal. Des. 47(8), 933–941 (2011)

    Article  Google Scholar 

  25. Ewing, R.E.: Society for Industrial, and Applied Mathematics. The Mathematics of Reservoir Simulation, Volume 1. SIAM, Philadelphia (1983)

    Book  Google Scholar 

  26. Gao, T., Zhang, W.H., Zhu, J.H., Xu, Y.J., Bassir, D.H.: Topology optimization of heat conduction problem involving design-dependent heat load effect. Finite Elem. Anal. Des. 44(14), 805–813 (2008)

    Article  Google Scholar 

  27. Gautschi, W.: Numerical Analysis, 2nd edn. Springer/Birkhäuser, New York (2012)

    Book  MATH  Google Scholar 

  28. Gersborg-Hansen, A., Bendsøe, M.P., Sigmund, O.: Topology optimization of heat conduction problems using the finite volume method. Struct. Multidiscip. Optim. 31(4), 251–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow Turbul. Combust. 65(3), 393–415 (2000)

    Article  MATH  Google Scholar 

  30. Gockenbach, M.S., Khan, A.A.: An abstract framework for elliptic inverse problems: Part 2. An augmented Lagrangian approach. Math. Mech. Solids 14(6):517–539 (2009;2008)

  31. Guo, R., Lin, T.: A group of immersed finite element spaces for elliptic interface problems. IMA J. Numer. Anal. (2017). https://doi.org/10.1093/imanum/drx074

  32. Guo, R., Lin, T., Zhang, X.: Nonconforming immersed finite element spaces for elliptic interface problems. Comput. Math. Appl. 75(6), 2002–2016 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Harbrecht, H., Tausch, J.: On the numerical solution of a shape optimization problem for the heat equation. SIAM J. Sci. Comput. 35(1), A.104–A121 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  35. He, X., Lin, T., Lin, Y.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differ. Equ. 24(5), 1265–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. He, X., Lin, T., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model. 8(2), 284–301 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Hegemann, J., Cantarero, A., Richardson, C.L., Teran, J.M.: An explicit update scheme for inverse parameter and interface estimation of piecewise constant coefficients in linear elliptic PDES. SIAM J. Sci. Comput. 35(2), A1098–A1119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56(6), 793–825 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Holder, D., Institute of Physics (Great Britain).: Electrical Impedance Tomography: Methods, History, and Applications. Institute of Physics Pub, Bristol (2005)

  40. Huang, X., Xie, Y.M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley, Hoboken (2010)

    Book  MATH  Google Scholar 

  41. Ito, K., Kunisch, K.: The augmented lagrangian method for parameter estimation in elliptic systems. SIAM J. Control Optim. 28(1), 113–136 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ito, K., Kunisch, K., Li, Z.: Level-set function approach to an inverse interface problem. Inverse Probl. 17, 1225 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jang, G.-W., Kim, Y.Y.: Sensitivity analysis for fixed-grid shape optimization by using oblique boundary curve approximation. Int. J. Solids Struct. 42(11), 3591–3609 (2005)

    Article  MATH  Google Scholar 

  44. Ji, L., McLaughlin, J.R., Renzi, D., Yoon, J.-R.: Interior elastodynamics inverse problems: shear wave speed reconstruction in transient elastography. Inverse Probl. 19(6), S1–S29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kim, H., Querin, O.M., Steven, G.P., Xie, Y.M.: Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh. Struct. Multidiscip. Optim. 24(6), 441–448 (2002)

    Article  Google Scholar 

  46. Kim, N.H., Chang, Y.: Eulerian shape design sensitivity analysis and optimization with a fixed grid. Comput. Methods Appl. Mech. Eng. 194(30), 3291–3314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kohn, R.V., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Commun. Pure Appl. Anal. 40(6), 745–777 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lee, H.S., Park, C.J., Park, H.W.: Identification of geometric shapes and material properties of inclusions in two-dimensional finite bodies by boundary parameterization. Comput. Methods Appl. Mech. Eng. 181(1), 1–20 (2000)

    Article  MATH  Google Scholar 

  49. Li, Q., Steven, G.P., Xie, Y.M., Querin, O.M.: Evolutionary topology optimization for temperature reduction of heat conducting fields. Int. J. Heat Mass Transf. 47(23), 5071–5083 (2004)

    Article  MATH  Google Scholar 

  50. Li, Z., Lin, T., Lin, Y., Rogers, R.C.: An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20(3), 338–367 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, Z., Lin, T., Xiaohui, W.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lin, M., Lin, T., Zhang, H.: Error analysis of an immersed finite element method for euler-bernoulli beam interface problems. Int. J. Numer. Anal. Model. 14, 822–841 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Lin, T., Lin, Y., Rogers, R., Lynne Ryan, M.: A rectangular immersed finite element space for interface problems. In: Scientific Computing and Applications (Kananaskis, AB, 2000), Volume 7 of Advanced Computer Theory Practice, pp. 107–114. Nova Science Publishers, Huntington (2001)

  54. Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53(2), 1121–1144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lin, T., Zhang, X.: Linear and bilinear immersed finite elements for planar elasticity interface problems. J. Comput. Appl. Math. 236(18), 4681–4699 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lionheart, W.R.B.: Boundary shape and electrical impedance tomography. Inverse Probl. 14, 139 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Luo, Z., Wang, M.Y., Wang, S., Wei, P.: A level set-based parameterization method for structural shape and topology optimization. Int. J. Numer. Methods Eng. 76(1), 1–26 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. McLaughlin, J.R., Zhang, N., Manduca, A.: Calculating tissue shear modulus and pressure by 2D log-elastographic methods. Inverse Probl. 26(8), 085007 (2010)

    Article  MATH  Google Scholar 

  59. Mohammadi, B., Pironneau, O.: Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36(1), 255–279 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  60. Najafi, A.R., Safdari, M., Tortorelli, D.A., Geubelle, P.H.: A gradient-based shape optimization scheme using an interface-enriched generalized FEM. Comput. Methods Appl. Mech. Eng. 296, 1–17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Nanthakumar, S.S., Lahmer, T., Rabczuk, T.: Detection of flaws in piezoelectric structures using extended fem. Int. J. Numer. Methods Eng. 96(6), 373–389 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research, second edn. Springer, Berlin (2006)

    Google Scholar 

  63. Novotny, A.A., Canelas, A., Laurain, A.: A non-iterative method for the inverse potential problem based on the topological derivative. In: Hintermüller, M., Leugering, G., Sokołowski, J. (eds.) Technical Report for Mini-Workshop: Geometries, Shapes and Topologies in PDE-based Applications, 57/2012, pp. 3383–3387. Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach (2012)

  64. Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  65. Peng, X., Niakhai, K., Protas, B.: A method for geometry optimization in a simple model of two-dimensional heat transfer. SIAM J. Sci. Comput. 35(5), B.1105–B1131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. Perego, M., Veneziani, A., Vergara, C.: A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J. Sci. Comput. 33(3), 1181–1211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. Rabinovich, D., Givoli, D., Vigdergauz, S.: XFEM-based crack detection scheme using a genetic algorithm. Int. J. Numer. Methods Eng. 71(9), 1051–1080 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  68. Ródenas, J.J., Fuenmayor, F.J., Tarancón, J.E.: A numerical methodology to assess the quality of the design velocity field computation methods in shape sensitivity analysis. Int. J. Numer. Methods Eng. 59(13), 1725–1747 (2004)

    Article  MATH  Google Scholar 

  69. Sasikumar, M., Balaji, C.: Optimization of convective fin systems: a holistic approach. Heat Mass Transf. 39(1), 57–68 (2002)

    Article  Google Scholar 

  70. Sattinger, D.H., Tracy, C.A., Venakides, S.: Inverse Scattering and Applications, Volume 122. American Mathematical Society, Providence (1991)

    Book  Google Scholar 

  71. Schnur, D.S., Zabaras, N.: An inverse method for determining elastic material properties and a material interface. Int. J. Numer. Methods Eng. 33(10), 2039–2057 (1992)

    Article  MATH  Google Scholar 

  72. Soghrati, S., Aragón, A.M., Armando Duarte, C., Geubelle, P.H.: An interface-enriched generalized fem for problems with discontinuous gradient fields. Int. J. Numer. Methods Eng. 89(8), 991–1008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  73. Suzuki, K., Kikuchi, N.: A homogenization method for shape and topology optimization. Comput. Methods Appl. Mech. Eng. 93(3), 291–318 (1991)

    Article  MATH  Google Scholar 

  74. van Keulen, F., Haftka, R.T., Kim, N.H.: Review of options for structural design sensitivity analysis. Part 1: linear systems. Comput. Methods Appl. Mech. Eng. 194(30), 3213–3243 (2005)

    Article  MATH  Google Scholar 

  75. Waisman, H., Chatzi, E., Smyth, A.W.: Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. Int. J. Numer. Methods Eng. 82, 303–328 (2010)

    MATH  Google Scholar 

  76. Wei, P., Wang, M.Y., Xing, X.: A study on X-FEM in continuum structural optimization using a level set model. Comput. Aided Des. 42(8), 708–719 (2010)

    Article  Google Scholar 

  77. Yeh, W.W.: Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour. Res. 22(2), 95–108 (1986)

    Article  Google Scholar 

  78. Zhang, H., Lin, T., Lin, Y.: Linear and quadratic immersed finite element methods for the multi-layer porous wall model for coronary drug-eluting stents. Int. J. Numer. Anal. Mod. 15, 48–73 (2018)

    MathSciNet  MATH  Google Scholar 

  79. Zhang, J., Zhang, W.H., Zhu, J.H., Xia, L.: Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis. Comput. Methods Appl. Mech. Eng. 245–246, 75–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  80. Zhang, X.: Nonconforming Immersed Finite Element Methods for Interface Problems. Ph.D. Thesis, Virginia Polytechnic Institute and State University (2013)

  81. Zhang, Y., Liu, S., Qiao, H.: Design of the heat conduction structure based on the topology optimization. Developments in Heat Transfer, Chap. 26. IntechOpen (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lin.

Additional information

This research was partially supported by Polyu G-UA7V and HKSAR B-Q40W.

Appendix A Technical Results

Appendix A Technical Results

1.1 A.1 Proof of Lemma 3.1

First, differentiating \(x_P=x(\hat{t}_P({\varvec{\alpha }}),{\varvec{\alpha }})\) and \(y_P=y(\hat{t}_P({\varvec{\alpha }}),{\varvec{\alpha }})\) with respect to \(\alpha _j\) and letting that \(\frac{\partial x}{\partial \hat{t}_P} := \frac{\partial x}{\partial t}|_{t=\hat{t}_P}\) and \(\frac{\partial y}{\partial \hat{t}_P} := \frac{\partial y}{\partial t}|_{t=\hat{t}_P}\), we have \( D_{\alpha _j}x_P= \frac{\partial x}{\partial \hat{t}_P} \frac{\partial \hat{t}_P}{ \partial \alpha _j } +\frac{\partial x}{\partial \alpha _j}|_{t=\hat{t}_P},~ D_{\alpha _j}y_P= \frac{\partial y}{\partial \hat{t}_P} \frac{\partial \hat{t}_P}{ \partial \alpha _j } +\frac{\partial y}{\partial \alpha _j}|_{t=\hat{t}_P}, \) which leads to

$$\begin{aligned} \frac{\partial y}{\partial \hat{t}_P} D_{\alpha _j}x_P - \frac{\partial x}{\partial \hat{t}_P} D_{\alpha _j}y_P = \frac{\partial y}{\partial \hat{t}_P}\frac{\partial x}{\partial \alpha _j}|_{t=\hat{t}_P} - \frac{\partial x}{\partial \hat{t}_P}\frac{\partial y}{\partial \alpha _j}|_{t=\hat{t}_P}. \end{aligned}$$
(A.1)

On the other hand, since P is on the edge \(A_1A_2\), we have the equation \( (y_2-y_1)x_P-(x_2-x_1)y_P=x_2y_1-x_1y_2. \) Differentiating it with respect to \(\alpha _j\) yields

$$\begin{aligned} (y_2-y_1)D_{\alpha _j}x_P -(x_2-x_1)D_{\alpha _j}y_P=0. \end{aligned}$$
(A.2)

Combining (A.2) and (A.1) yields the linear system for \(D_{\alpha _j}P\) in (3.8). Let \(\mathbf { n}_e\) be the normal vector to the edge \(A_1A_2\). Then we have \( \text {det}(M_P(\hat{t}_P))=\mathbf { n}_e\cdot \nabla \Gamma (\hat{t}_P({\varvec{\alpha }}), {\varvec{\alpha }}) \) which is non zero by the assumption that \(A_1A_2\) is not tangent to \(\Gamma (t, {\varvec{\alpha }})\) at P.

1.2 A.2 Material Derivatives of Local Matrices and Vectors

For the simplicity, we assume that the boundary condition functions \(g^k_N\), \(g^k_D\) and the force term \(f^k\) are fixed and independent with interface change, \(1\leqslant k \leqslant K\). Therefore, on each interface element \(T\in \mathcal {T}_h^{int}\) and each interface edge \(e \in \mathcal {E}_h^{int}\), we have:

$$\begin{aligned} D_{\alpha _j}\mathbf { K}_T&= \left( \int _T \beta \nabla \frac{\partial \psi _{p,T}}{\partial \alpha _j} \cdot \nabla \psi _{q,T} dX \right) _{p, q\in \mathcal {I}} + \left( \int _T \beta \nabla \frac{\partial \psi _{p,T}}{\partial \alpha _j} \cdot \nabla \psi _{q,T} dX \right) _{p, q\in \mathcal {I}}^T \nonumber \\&\quad +\left( \sum _{m=1}^3 \int _{T_m} \beta \nabla \psi _{p,T} \cdot \nabla \psi _{q,T}~ dX ~ tr \left( (D_{\alpha _j} \mathbf { J}_m) \mathbf { J}^{-1}_m \right) \right) _{p, q\in \mathcal {I}}, \end{aligned}$$
(A.3a)
$$\begin{aligned} D_{\alpha _j} \mathbf { E}^{r_1r_2}_e&= \left( \int _e \beta \nabla \frac{\partial \psi _{p,T^{r_1}}}{\partial \alpha _j}\cdot (\psi _{q,T^{r_2}}\mathbf { n}^{r_2}_e) ds \right) _{p, q\in \mathcal {I}} \nonumber \\&\quad + \left( \int _e \beta \nabla \psi _{p,T^{r_1}}\cdot \left( \frac{\partial \psi _{q,T^{r_2}}}{\partial \alpha _j}\mathbf { n}^{r_2}_e\right) ds \right) _{p, q\in \mathcal {I}} \nonumber \\&\quad + \Bigg ( \beta ^- \nabla \psi ^-_{p,T^{r_1}}\cdot (\psi ^-_{q,T^{r_2}}\mathbf { n}^{r_2}_e)|_{P} - \beta ^+ \nabla \psi ^+_{p,T^{r_1}}\cdot (\psi ^+_{q,T^{r_2}}\mathbf { n}^{r_2}_e)|_{P} \Bigg )_{p, q\in \mathcal {I}} \nonumber \\&\quad \frac{ D_{\alpha _j}P\cdot (A_2-A_1)}{\left\| A_2-A_1\right\| }, \end{aligned}$$
(A.3b)
$$\begin{aligned} D_{\alpha _j} \mathbf { G}^{r_1r_2}_e&= \frac{\sigma ^0_e}{|e|} \left( \int _e \left( \frac{\partial \psi _{p,T^{r_1}}}{\partial \alpha _j}\mathbf { n}^{r_1}_e\right) \cdot (\psi _{q,T^{r_2}}\mathbf { n}^{r_2}_e) ds \right. \nonumber \\&\quad \left. + \int _e (\psi _{p,T^{r_1}}\mathbf { n}^{r_1}_e)\cdot \left( \frac{\partial \psi _{q,T^{r_2}}}{\partial \alpha _j}\mathbf { n}^{r_2}_e\right) ds \right) _{p, q\in \mathcal {I}}, \end{aligned}$$
(A.3c)
$$\begin{aligned} D_{\alpha _j} \mathbf {R}_T&= \left( \int _T \frac{\partial \psi _{p,T}}{\partial \alpha _j} dX + \int _T\nabla \psi _{p,T}\cdot \mathbf { V}^j dX \right) _{p\in \mathcal {I}} \nonumber \\&\quad +\left( \sum _{i=1}^3 \int _{T_i} \psi _{p,T}~ dX ~ tr \left( (D_{\alpha _j} \mathbf { J}_i) \mathbf { J}^{-1}_i \right) \right) _{p \in \mathcal {I}}. \end{aligned}$$
(A.3d)

and the material derivatives of vectors:

$$\begin{aligned} D_{\alpha _j}\mathbf { F}_T^k&= \left( \int _T f^k \frac{\partial \psi _{p,T}}{\partial \alpha _j} dX \right) _{p\in \mathcal {I}} + \left( \int _T \nabla (f^k\psi _{p,T})\cdot \mathbf { V}^j_T dX \right) _{p\in \mathcal {I}} \nonumber \\&\quad +\left( \sum _{m=1}^3 \int _{T_m} f^k \psi _{p,T}~ dX ~ tr \left( (D_{\alpha _j} \mathbf { J}_m) \mathbf { J}^{-1}_m \right) \right) _{p \in \mathcal {I}}, \end{aligned}$$
(A.4a)
$$\begin{aligned} D_{\partial _j} \mathbf { B}_e^k&= \left( \int _e \beta g_D^k \nabla \frac{\partial \psi _{p,T}}{\partial \alpha _j}\cdot \mathbf { n}_e ds \right) _{p\in \mathcal {I}}\nonumber \\&\quad + \Bigg ( \beta ^- g_D^k \nabla \psi ^-_{p,T}\cdot \mathbf { n}_e|_{P} - \beta ^+ g_D^k \nabla \psi ^+_{p,T}\cdot \mathbf { n}_e|_{P} \Bigg )_{p\in \mathcal {I}} \frac{ D_{\alpha _j}P\cdot (A_2-A_1)}{\left\| A_2-A_1\right\| }, \end{aligned}$$
(A.4b)
$$\begin{aligned} D_{\partial _j} \mathbf { C}_e^k&= \frac{\sigma ^0_e}{|e|}\left( \int _e \beta g_D^k \frac{\partial \psi _{p,T}}{\partial \alpha _j} ds \right) _{p\in \mathcal {I}} + \frac{\sigma ^0_e}{|e|}\Bigg ( \beta ^- g_D^k \psi ^-_{p,T}|_{P} - \beta ^+ g_D^k \psi ^+_{p,T}|_{P} \Bigg )_{p\in \mathcal {I}} \nonumber \\&\quad \frac{ D_{\alpha _j}P\cdot (A_2-A_1)}{\left\| A_2-A_1\right\| }, \end{aligned}$$
(A.4c)
$$\begin{aligned} D_{\partial _j} \mathbf { N}_e^k&= \left( \int _e g_N^k \frac{\partial \psi _{p,T}}{\partial \alpha _j} ds \right) _{p\in \mathcal {I}} + \Bigg ( g_N^k \psi ^-_{p,T}|_{P} - g_N^k \psi ^+_{p,T}|_{P} \Bigg )_{p\in \mathcal {I}} \frac{ D_{\alpha _j}P\cdot (A_2-A_1)}{\left\| A_2-A_1\right\| }. \end{aligned}$$
(A.4d)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Lin, T. & Lin, Y. A Fixed Mesh Method with Immersed Finite Elements for Solving Interface Inverse Problems. J Sci Comput 79, 148–175 (2019). https://doi.org/10.1007/s10915-018-0847-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0847-y

Keywords

Navigation