Skip to main content
Log in

A Finite Element Method with Strong Mass Conservation for Biot’s Linear Consolidation Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An H(div) conforming finite element method for solving the linear Biot equations is analyzed. Formulations for the standard mixed method are combined with formulation of interior penalty discontinuous Galerkin method to obtain a consistent scheme. Optimal convergence rates are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D.N., Boffi, D., Falk, R.S.: Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42(6), 2429–2451 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal.II library, version 8.4. J. Numer. Math. 24, 135–141 (2016)

  4. Barry, S., Mercer, G.: Exact solutions for two-dimensional time-dependent flow and deformation within a poroelastic medium. J. Appl. Mech. 66(2), 536–540 (1998)

    Article  MathSciNet  Google Scholar 

  5. Biot, M., Willis, D.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    MathSciNet  Google Scholar 

  6. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  7. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg (2013)

    Book  Google Scholar 

  8. Brenner, S.C.: Korn’s inequalities for piecewise \(h^1\) vector fields. Math. Comput. 73(247), 1067–1087 (2004)

    Article  Google Scholar 

  9. Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Computer Methods Appl. Mech. Eng. 191(17), 1895–1908 (2002)

    Article  MathSciNet  Google Scholar 

  10. Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model (2017). arXiv preprint arXiv:1706.00724

  11. Mattheij, R., Molenaar, J.: Ordinary Differential Equations in Theory and Practice. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  Google Scholar 

  12. Murad, M.A., Loula, A.F.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37(4), 645–667 (1994)

    Article  MathSciNet  Google Scholar 

  13. Oyarzúa, R., Ruiz-Baier, R.: Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54(5), 2951–2973 (2016)

    Article  MathSciNet  Google Scholar 

  14. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity i: the continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)

    Article  MathSciNet  Google Scholar 

  15. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)

    Article  MathSciNet  Google Scholar 

  16. Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  Google Scholar 

  17. Riviere, B., Shaw, S., Wheeler, M., Whiteman, J.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numerische Mathematik 95(2), 347–376 (2003)

    Article  MathSciNet  Google Scholar 

  18. Schötzau, D., Schwab, C., Toselli, A.: \(hp\)-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2003)

    Article  Google Scholar 

  19. Showalter, R.E.: Poroelastic filtration coupled to Stokes flow. Lect. Notes Pure Appl. Math. 242, 229–241 (2010)

    Article  MathSciNet  Google Scholar 

  20. Yi, S.Y.: A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 29(5), 1749–1777 (2013)

    Article  MathSciNet  Google Scholar 

  21. Yi, S.Y.: Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 30(4), 1189–1210 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Computations in this article were produced using the deal.II library [3].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Riviere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanschat, G., Riviere, B. A Finite Element Method with Strong Mass Conservation for Biot’s Linear Consolidation Model. J Sci Comput 77, 1762–1779 (2018). https://doi.org/10.1007/s10915-018-0843-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0843-2

Keywords

Navigation