Journal of Scientific Computing

, Volume 75, Issue 2, pp 1156–1186 | Cite as

Three \(l_1\) Based Nonconvex Methods in Constructing Sparse Mean Reverting Portfolios

Article
  • 52 Downloads

Abstract

We study the problem of constructing sparse and fast mean reverting portfolios. The problem is motivated by convergence trading and formulated as a generalized eigenvalue problem with a cardinality constraint (d’Aspremont in Quant Finance 11(3):351–364, 2011). We use a proxy of mean reversion coefficient, the direct Ornstein–Uhlenbeck estimator, which can be applied to both stationary and nonstationary data. In addition, we introduce three different methods to enforce the sparsity of the solutions. One method uses the ratio of \(l_1\) and \(l_2\) norms and the other two use \(l_1\) norm. We analyze various formulations of the resulting non-convex optimization problems and develop efficient algorithms to solve them for portfolio sizes as large as hundreds. By adopting a simple convergence trading strategy, we test the performance of our sparse mean reverting portfolios on both synthetic and historical real market data. In particular, the \(l_1\) regularization method, in combination with quadratic program formulation as well as difference of convex functions and least angle regression treatment, gives fast and robust performance on large out-of-sample data set.

Keywords

Mean reversion Sparse estimation Convergence trading \(l_1\) and \(l_2\) norms 

Mathematics Subject Classification

62P05 90C20 90C26 

Notes

Acknowledgements

We would like to thank Dr. Wuan Luo for bringing reference [6] to our attention and for helpful communication.

References

  1. 1.
    Barekat, F., Yin, K., Caflisch, R.E., Osher, S.J., Lai, R., Ozolins, V.: Compressed wannier modes found from an \(L_1\) regularized energy functional. arXiv preprint arXiv:1403.6883 (2014)
  2. 2.
    Box, G.E., Tiao, G.C.: A canonical analysis of multiple time series. Biometrika 64(2), 355–365 (1977)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Box, M., Davies, D., Swann, W.H., Australia, I.: Non-linear Optimization Techniques, vol. 5. Oliver & Boyd, Edinburgh (1969)Google Scholar
  4. 4.
    Chow, S.-N., Yang, T.-S., Zhou, H.: Global optimizations by intermittent diffusion. National Science Council Tunghai University Endowment Fund for Academic Advancement Mathematics Research Promotion Center, p. 121 (2009)Google Scholar
  5. 5.
    Cuturi, M., D’aspremont, A.: Mean reversion with a variance threshold. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 271–279 (2013)Google Scholar
  6. 6.
    d’Aspremont, A.: Identifying small mean-reverting portfolios. Quant. Finance 11(3), 351–364 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    d’Aspremont, A., El Ghaoui, L., Jordan, M.I., Lanckriet, G.R.: A direct formulation for sparse PCA using semidefinite programming. SIAM Rev. 49(3), 434–448 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Engle, R.F., Granger, C.W.: Co-integration and error correction: representation, estimation, and testing. Econom. J. Econom. Soc. 55, 251–276 (1987)Google Scholar
  10. 10.
    Esser, E., Lou, Y., Xin, J.: A method for finding structured sparse solutions to nonnegative least squares problems with applications. SIAM J. Imaging Sci. 6(4), 2010–2046 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fogarasi, N., Levendovszky, J.: Improved parameter estimation and simple trading algorithm for sparse, mean reverting portfolios. In: Annales Universitatis Scientiarium Budapestinensis, Sectio Computatorica, vol. 37, pp. 121–144 (2012)Google Scholar
  12. 12.
    Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hotelling, H.: Relations between two sets of variates. Biometrika 28(3–4), 321–377 (1936)CrossRefMATHGoogle Scholar
  14. 14.
    Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)MathSciNetMATHGoogle Scholar
  15. 15.
    Hu, Y., Long, H.: Least squares estimator for Ornstein–Uhlenbeck processes driven by \(\alpha \)-stable motions. Stoch. Process. Appl. 119(8), 2465–2480 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ji, H., Li, J., Shen, Z., Wang, K.: Image deconvolution using a characterization of sharp images in wavelet domain. Appl. Comput. Harmonic Anal. 32(2), 295–304 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the lasso. J. Comput. Gr. Stat. 12(3), 531–547 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Journée, M., Nesterov, Y., Richtárik, P., Sepulchre, R.: Generalized power method for sparse principal component analysis. J. Mach. Learn. Res. 11, 517–553 (2010)MathSciNetMATHGoogle Scholar
  19. 19.
    Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 233–240. IEEE (2011)Google Scholar
  20. 20.
    Lai, R., Osher, S.: A splitting method for orthogonality constrained problems. J. Sci. Comput. 58(2), 431–449 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Le Thi, H., Huynh, V., Pham Dinh, T.: Convergence analysis of DC algorithm for DC programming with subanalytic data. Annals of Operations Research, Technical Report, LMI, INSA-Rouen (2009)Google Scholar
  22. 22.
    Le Thi, H.A., Tao, P.D.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Glob. Optim. 11(3), 253–285 (1997)CrossRefMATHGoogle Scholar
  23. 23.
    Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ngo, T.T., Bellalij, M., Saad, Y.: The trace ratio optimization problem. SIAM Rev. 54(3), 545–569 (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Ozoliņš, V., Lai, R., Caflisch, R., Osher, S.: Compressed modes for variational problems in mathematics and physics. Proc. Natl. Acad. Sci. 110(46), 18368–18373 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ozoliņš, V., Lai, R., Caflisch, R., Osher, S.: Compressed plane waves yield a compactly supported multiresolution basis for the laplace operator. Proc. Natl. Acad. Sci. 111(5), 1691–1696 (2014)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Richtárik, P., Takáč, M., Ahipaşaoğlu, S.D.: Alternating maximization: unifying framework for 8 sparse PCA formulations and efficient parallel codes. arXiv preprint arXiv:1212.4137 (2012)
  28. 28.
    Sriperumbudur, B.K., Torres, D.A., Lanckriet, G.R.: Sparse eigen methods by dc programming. In: Proceedings of the 24th International Conference on Machine Learning, pp. 831–838. ACM (2007)Google Scholar
  29. 29.
    Tao, P.D., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)MathSciNetMATHGoogle Scholar
  30. 30.
    Tao, P.D., Le Thi, H.A.: A DC optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)Google Scholar
  32. 32.
    Yin, P., Esser, E., Xin, J.: Ratio and difference of l1 and l2 norms and sparse representation with coherent dictionaries. Commun. Inf. Syst. 14(2), 87–109 (2014)MathSciNetGoogle Scholar
  33. 33.
    Yu, J.: Bias in the estimation of the mean reversion parameter in continuous time models. J. Econom. 169(1), 114–122 (2012)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Gr. Stat. 15(2), 265–286 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Playa Del ReyUSA
  2. 2.Department of MathematicsUniversity of California at IrvineIrvineUSA

Personalised recommendations