Strong Stability Preserving Explicit Peer Methods for Discontinuous Galerkin Discretizations
- 117 Downloads
- 1 Citations
Abstract
In this paper we study explicit peer methods with the strong stability preserving (SSP) property for the numerical solution of hyperbolic conservation laws in one space dimension. A system of ordinary differential equations is obtained by discontinuous Galerkin (DG) spatial discretizations, which are often used in the method of lines approach to solve hyperbolic differential equations. We present in this work the construction of explicit peer methods with stability regions that are designed for DG spatial discretizations and with large SSP coefficients. Methods of second- and third order with up to six stages are optimized with respect to both properties. The methods constructed are tested and compared with appropriate Runge–Kutta methods. The advantage of high stage order is verified numerically.
Keywords
Discontinuous Galerkin Strong stability preserving Explicit peer methodsMathematics Subject Classification
65L05 65L06Notes
Acknowledgements
The authors are grateful to the anonymous referees for their valuable remarks and comments on the paper.
References
- 1.Butcher, J.C.: General linear methods. Acta Numer. 15, 157–256 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 2.Calvo, M., Montijano, J.I., Rández, L., Van Daele, M.: On the derivation of explicit two-step peer methods. Appl. Numer. Math. 61(4), 395–409 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 3.Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATHGoogle Scholar
- 4.Cockburn, B., Shu, C.W.: The Runge-Kutta local projection \(P^1\)-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25(3), 337–361 (1989)MathSciNetCrossRefMATHGoogle Scholar
- 5.Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 6.Constantinescu, E., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130–3150 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 7.Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)MathSciNetCrossRefMATHGoogle Scholar
- 8.Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)CrossRefMATHGoogle Scholar
- 9.Horváth, Z., Podhaisky, H., Weiner, R.: Strong stability preserving explicit peer methods. In: Report 04, Martin Luther University Halle-Wittenberg, http://www.mathematik.uni-halle.de/institut/reports/ (2014)
- 10.Horváth, Z., Podhaisky, H., Weiner, R.: Strong stability preserving explicit peer methods. J. Comput. Appl. Math. 296, 776–788 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 11.Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271–298 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 12.Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Chichester (2009)CrossRefMATHGoogle Scholar
- 13.Ketcheson, D.I., Ahmadia, A.: Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci. 7(2), 247–271 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 14.Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49(6), 2618–2639 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 15.Klinge, M.: Peer-Methoden für DG-Diskretisierungen. In: Master’s thesis, Martin Luther University Halle-Wittenberg (2016)Google Scholar
- 16.Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J.: Dynamic \(p\)-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Engrg. 198(21–26), 1766–1774 (2009)CrossRefMATHGoogle Scholar
- 17.Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 18.Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge–Kutta time discretizations for discontinuous Galerkin methods. J. Sci. Comput. 60(2), 313–344 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 19.Kulikov, G.Y., Weiner, R.: Variable-stepsize interpolating explicit parallel peer methods with inherent global error control. SIAM J. Sci. Comput. 32(4), 1695–1723 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 20.Li, G., Xing, Y.: Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. J. Sci. Comput. 67(2), 493–513 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 21.Mirabito, C., Dawson, C., Kubatko, E.J., Westerink, J.J., Bunya, S.: Implementation of a discontinuous Galerkin morphological model on two-dimensional unstructured meshes. Comput. Methods Appl. Mech. Eng. 200(1–4), 189–207 (2010)MathSciNetMATHGoogle Scholar
- 22.Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. In: Technical Report LA-UR-73-479 p. Los Alamos Scientific Laboratory (1973)Google Scholar
- 23.Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227(3), 1887–1922 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 24.Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50(4), 405–418 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 25.Schmitt, B.A., Weiner, R., Beck, S.: Two-step peer methods with continuous output. BIT Numer. Math. 53(3), 717–739 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 26.Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 27.Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 28.Trahan, C.J., Dawson, C.: Local time-stepping in Runge–Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations. Comput. Methods Appl. Mech. Eng. 217–220, 139–152 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 29.Weiner, R., Biermann, K., Schmitt, B.A., Podhaisky, H.: Explicit two-step peer methods. Comput. Math. Appl. 55(4), 609–619 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 30.Weiner, R., Schmitt, B.A., Podhaisky, H., Jebens, S.: Superconvergent explicit two-step peer methods. J. Comput. Appl. Math. 223, 753–764 (2009)MathSciNetCrossRefMATHGoogle Scholar