Skip to main content
Log in

Strong Stability Preserving Explicit Peer Methods for Discontinuous Galerkin Discretizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we study explicit peer methods with the strong stability preserving (SSP) property for the numerical solution of hyperbolic conservation laws in one space dimension. A system of ordinary differential equations is obtained by discontinuous Galerkin (DG) spatial discretizations, which are often used in the method of lines approach to solve hyperbolic differential equations. We present in this work the construction of explicit peer methods with stability regions that are designed for DG spatial discretizations and with large SSP coefficients. Methods of second- and third order with up to six stages are optimized with respect to both properties. The methods constructed are tested and compared with appropriate Runge–Kutta methods. The advantage of high stage order is verified numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Butcher, J.C.: General linear methods. Acta Numer. 15, 157–256 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calvo, M., Montijano, J.I., Rández, L., Van Daele, M.: On the derivation of explicit two-step peer methods. Appl. Numer. Math. 61(4), 395–409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Shu, C.W.: The Runge-Kutta local projection \(P^1\)-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25(3), 337–361 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantinescu, E., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130–3150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  9. Horváth, Z., Podhaisky, H., Weiner, R.: Strong stability preserving explicit peer methods. In: Report 04, Martin Luther University Halle-Wittenberg, http://www.mathematik.uni-halle.de/institut/reports/ (2014)

  10. Horváth, Z., Podhaisky, H., Weiner, R.: Strong stability preserving explicit peer methods. J. Comput. Appl. Math. 296, 776–788 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271–298 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Chichester (2009)

    Book  MATH  Google Scholar 

  13. Ketcheson, D.I., Ahmadia, A.: Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci. 7(2), 247–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49(6), 2618–2639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klinge, M.: Peer-Methoden für DG-Diskretisierungen. In: Master’s thesis, Martin Luther University Halle-Wittenberg (2016)

  16. Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J.: Dynamic \(p\)-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Engrg. 198(21–26), 1766–1774 (2009)

    Article  MATH  Google Scholar 

  17. Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge–Kutta time discretizations for discontinuous Galerkin methods. J. Sci. Comput. 60(2), 313–344 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kulikov, G.Y., Weiner, R.: Variable-stepsize interpolating explicit parallel peer methods with inherent global error control. SIAM J. Sci. Comput. 32(4), 1695–1723 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, G., Xing, Y.: Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. J. Sci. Comput. 67(2), 493–513 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mirabito, C., Dawson, C., Kubatko, E.J., Westerink, J.J., Bunya, S.: Implementation of a discontinuous Galerkin morphological model on two-dimensional unstructured meshes. Comput. Methods Appl. Mech. Eng. 200(1–4), 189–207 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. In: Technical Report LA-UR-73-479 p. Los Alamos Scientific Laboratory (1973)

  23. Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227(3), 1887–1922 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50(4), 405–418 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schmitt, B.A., Weiner, R., Beck, S.: Two-step peer methods with continuous output. BIT Numer. Math. 53(3), 717–739 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Trahan, C.J., Dawson, C.: Local time-stepping in Runge–Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations. Comput. Methods Appl. Mech. Eng. 217–220, 139–152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weiner, R., Biermann, K., Schmitt, B.A., Podhaisky, H.: Explicit two-step peer methods. Comput. Math. Appl. 55(4), 609–619 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Weiner, R., Schmitt, B.A., Podhaisky, H., Jebens, S.: Superconvergent explicit two-step peer methods. J. Comput. Appl. Math. 223, 753–764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable remarks and comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Klinge.

Appendix: Coefficients of the New DGSSP-Optimized Explicit Peer Methods

Appendix: Coefficients of the New DGSSP-Optimized Explicit Peer Methods

See Tables 5, 6, 7, 8, 9, 10, 11, 12.

Table 5 DGSSP-optimized explicit peer method, \(s=2,\ p=2\) with DG(2) spatial operator
Table 6 DGSSP-optimized explicit peer method, \(s=3,\ p=2\) with DG(2) spatial operator
Table 7 DGSSP-optimized explicit peer method, \(s=4,\ p=2\) with DG(2) spatial operator
Table 8 DGSSP-optimized explicit peer method, \(s=5,\ p=2\) with DG(2) spatial operator
Table 9 DGSSP-optimized explicit peer method, \(s=6,\ p=2\) with DG(2) spatial operator
Table 10 DGSSP-optimized explicit peer method, \(s=3,\ p=3\) with DG(3) spatial operator
Table 11 DGSSP-optimized explicit peer method, \(s=4,\ p=3\) with DG(3) spatial operator
Table 12 DGSSP-optimized explicit peer method, \(s=5,\ p=3\) with DG(3) spatial operator

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinge, M., Weiner, R. Strong Stability Preserving Explicit Peer Methods for Discontinuous Galerkin Discretizations. J Sci Comput 75, 1057–1078 (2018). https://doi.org/10.1007/s10915-017-0573-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0573-x

Keywords

Mathematics Subject Classification

Navigation