Skip to main content
Log in

Well Conditioned Pseudospectral Schemes with Tunable Basis for Fractional Delay Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The main purpose of this work is to develop spectrally accurate and well conditioned pseudospectral schemes for solving fractional delay differential equations (FDDEs). The essential idea is to recast FDDEs into fractional integral equations (FIEs) and then discretize the FIEs via generalized fractional pseudospectral integration matrices (GFPIMs). We construct GFPIMs by employing the basis of weighted Lagrange interpolating functions, and provide an exact, efficient, and stable approach to computing GFPIMs. The GFPIM schemes have two remarkable features: (i) the endpoint singularity of the solution to FDDEs can be effectively captured via the tunable basis, and (ii) the linear system resulting from pseudospectral discretization is well conditioned. We also provide a rigorous convergence analysis for the particular FPIM schemes via a linear FIE with any \(\gamma >0\) where \(\gamma \) is the order of fractional integrals. Numerical results on benchmark FDDEs with smooth/singular solutions demonstrate the spectral rate of convergence for the GFPIM schemes. For FDDEs with piecewise smooth solutions, the GFPIM schemes can obtain accurate solutions but converge slowly due to their essential feature of “global” approximation on the entire time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bhalekar, S., Daftardar-Gejji, V.: A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl. 1(5), 1–9 (2011)

    MATH  Google Scholar 

  2. Moghaddam, B.P., Mostaghim, Z.S.: A numerical method based on finite difference for solving fractional delay differential equations. J. Taibah Univ. Sci. 7(3), 120–127 (2013)

    Article  Google Scholar 

  3. Khader, M.M.: The use of generalized Laguerre polynomials in spectral methods for solving fractional delay differential equations. J. Comput. Nonlinear Dyn. 8(4), 041018 (2013)

    Article  Google Scholar 

  4. Saeed, U., ur Rehman, M.: Hermite wavelet method for fractional delay differential equations. J. Differ. Equ. 2014, Article ID: 359093 (2014)

  5. Zayernouri, M., Cao, W., Zhang, Z., Karniadakis, G.E.: Spectral and discontinuous spectral element methods for fractional delay equations. SIAM J. Sci. Comput. 36(6), B904–B929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sherif, M.N.: Numerical solution of system of fractional delay differential equations using polynomial spline functions. Appl. Math. 7(6), 518–526 (2016)

    Article  Google Scholar 

  7. Muthukumar, P., Ganesh Priya, B.: Numerical solution of fractional delay differential equation by shifted Jacobi polynomials. Int. J. Comput. Math. 94(3), 471–492 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ali, I., Brunner, H., Tang, T.: A spectral method for pantograph-type delay differential equations and its convergence analysis. J. Comput. Math. 27(2–3), 254–265 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Wang, Z.-Q., Wang, L.-L.: A Legendre–Gauss collocation method for nonlinear delay differential equations. Discrete Contin. Dyn. Syst. Ser. B 13(3), 685–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wei, Y., Chen, Y.: Legendre spectral collocation methods for pantograph Volterra delay-integro-differential equations. J. Sci. Comput. 53(3), 672–688 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, R., Zhu, B., Xie, H.: Spectral methods for weakly singular Volterra integral equations with pantograph delays. Front. Math. China 8(2), 281–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gu, Z., Chen, Y.: Legendre spectral-collocation method for Volterra integral equations with non-vanishing delay. Calcolo 51(1), 151–174 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, J., Cao, Y., Xu, Y.: Legendre spectral collocation methods for Volterra delay-integro-differential equations. J. Sci. Comput. 67(3), 1110–1133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Z.-Q., Sheng, C.-T.: An \(hp\)-spectral collocation method for nonlinear Volterra integral equations with vanishing variable delays. Math. Comput. 85(298), 635–666 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Sheng, C.-T., Wang, Z.-Q., Guo, B.-Y.: An \(hp\)-spectral collocation method for nonlinear Volterra functional integro-differential equations with delays. Appl. Numer. Math. 105, 1–24 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26(4), 465–519 (2000)

    Article  MathSciNet  Google Scholar 

  18. Tang, X., Xu, H.: Fractional pseudospectral integration matrices for solving fractional differential, integral, and integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 30(1–3), 248–267 (2016)

    Article  MathSciNet  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, 1st edn. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  20. Elbarbary, E.M.E.: Pseudospectral integration matrix and boundary value problems. Int. J. Comput. Math. 84(12), 1851–1861 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elgindy, K.T., Smith-Miles, K.A.: Solving boundary value problems, integral, and integro-differential equations using Gegenbauer integration matrices. J. Comput. Appl. Math. 237(1), 307–325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, L.-L., Samson, M.D., Zhao, X.: A well-conditioned collocation method using a pseudospectral integration matrix. SIAM J. Sci. Comput. 36(3), A907–A929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Du, K.: On well-conditioned spectral collocation and spectral methods by the integral reformulation. SIAM J. Sci. Comput. 38(5), A3247–A3263 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tang, X., Liu, Z., Wang, X.: Integral fractional pseudospectral methods for solving fractional optimal control problems. Automatica 62, 304–311 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains, 1st edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  27. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79(269), 147–167 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ragozin, D.L.: Polynomial approximation on compact manifolds and homogeneous spaces. Trans. Am. Math. Soc. 150, 41–53 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ragozin, D.L.: Constructive polynomial approximation on spheres and projective spaces. Trans. Am. Math. Soc. 162, 157–170 (1971)

    MathSciNet  MATH  Google Scholar 

  30. Chen, Y., Li, X., Tang, T.: A note on Jacobi spectral-collocation methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Math. 31(1), 47–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mastroianni, G., Occorsio, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey. J. Comput. Appl. Math. 134(1–2), 325–341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Morgado, M.L., Ford, N.J., Lima, P.M.: Analysis and numerical methods for fractional differential equations with delay. J. Comput. Appl. Math. 252, 159–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications, 1st edn. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  34. Kufner, A., Persson, L.E.: Weighted Inequalities of Hardy Type, 1st edn. World Scientific, New York (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the associate editor and the anonymous reviewers for their constructive comments, which shaped the paper into its final form. The work of the first author was partially supported by the Fundamental Research Funds for the Central Universities (Grant No. 3102016ZY003). The work of the second author was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC, RGPIN-2016-05386), and the National Natural Science Foundation of China (Grant No. 61473116). The work of the third author was partially supported by the National Natural Science Foundation of China (Grant No. 11472223), the Natural Science Foundation of Shaanxi Province (Grant No. 2016JM1015), and the Science and Technology Program of Shenzhen Government (Grant No. JCYJ20160331142601031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Tang.

Appendices

Appendix A: Proof of Theorem 1

Proof

In order to calculate the integral in Eq. (11), we first employ the change of variables

$$\begin{aligned} s=\frac{\psi (t_{k})-t_{L}}{2}\sigma +\frac{\psi (t_{k})+t_{L}}{2}, \quad \sigma \in [-1,+1], \end{aligned}$$
(A.1)

to transform the integral interval \([t_L,\psi (t_k)]\) to the standard interval \([-1,+1]\). Then, we have

$$\begin{aligned} \psi (t_{k})-s=\frac{\psi (t_{k})-t_{L}}{2}(1-\sigma ). \end{aligned}$$
(A.2)

Substituting Eqs. (A.1) and (A.2) into Eq. (11) and taking account of Eqs. (1) and (12) yields

$$\begin{aligned} {_{t_{L}}^{\psi _{t}}}\varvec{I}_{ki}^{\gamma _{\grave{\varrho }}}= & {} \, \frac{1}{\Gamma (\gamma )}\int _{t_{L}}^{\psi (t_{k})} (\psi (t_{k})-s)^{\gamma -1}{\mathcal {L}}_{i}^{\grave{\varrho }}(s)\,\mathrm {d}s\nonumber \\= & {} \,\frac{(\psi (t_{k})-t_{L})^{\gamma +\varrho }}{\Gamma (\gamma ) 2^{\gamma +\varrho }(t_{i}-t_{L})^\varrho }\int _{-1}^{+1}(1-\sigma ) ^{\gamma -1}(1+\sigma )^{\varrho }\,\cdot {\mathcal {L}}_{i}(\sigma ;t_{L},\psi (t_{k}))\,\mathrm {d}\sigma . \end{aligned}$$
(A.3)

Recalling that \({\mathcal {L}}_{i}(\sigma ;t_{L},\psi (t_{k}))\in {\mathcal {P}}_{N-1}\), the integral in the last equality of Eq. (A.3) can then be calculated exactly using the JG quadrature [33, p. 80]. Thus, Eq. (15a) follows. In the same way, Eq. (15b) can be obtained. \(\square \)

Appendix B: Proof of Theorem 5

Proof

Using Eqs. (45) and (43c), we have

$$\begin{aligned} \Vert e(\tau )\Vert _{\infty }\,\le \,C\,\Vert \zeta (\tau )\Vert _{\infty }\, \le \,C\sum _{j=1}^2\Vert {\mathcal {E}}_{j}(\tau )\Vert _{\infty }. \end{aligned}$$
(B.1)

Now, it follows from Lemma 2 that

$$\begin{aligned} \begin{aligned} \Vert {\mathcal {E}}_{1}(\tau )\Vert _{\infty }\,&=\,\Vert g(\tau ) -{\mathcal {T}}_{N}^{\mathcal {L}}g(\tau )\Vert _{\infty } \\&\le {\left\{ \begin{array}{ll} CN^{\frac{1}{2}-m}\log N|g(\tau )|_{H_{\omega ^{c}}^{m;N} (-1,+1)}, &{}-1<\alpha ,\beta <-\frac{1}{2} \\ CN^{1+\max (\alpha ,\beta )-m}|g(\tau )|_{H_{\omega ^{c}}^{m;N} (-1,+1)}, &{}-\frac{1}{2}\le \alpha ,\beta \le 0 \end{array}\right. }. \end{aligned} \end{aligned}$$
(B.2)

Next, we estimate \(\Vert {\mathcal {E}}_{2}(\tau )\Vert _{\infty }\). It is clear from Eq. (40a) that \(e(\tau )\in C[-1,+1]\) as \(g(\tau )\) is assumed to be sufficiently smooth. Consequently, using Lemma 3 and Theorem 4, we have

$$\begin{aligned} \Vert {\mathcal {E}}_{2}(\tau )\Vert _{\infty }\,\le & {} \,C_{\lfloor \gamma \rfloor , \varepsilon }N^{-(\lfloor \gamma \rfloor +\varepsilon )}\Vert {_{-1}}{\mathcal {I}}_{\tau }^{\gamma } e(\sigma )\Vert _{\lfloor \gamma \rfloor ,\varepsilon }\nonumber \\\le & {} \,CN^{-(\lfloor \gamma \rfloor +\varepsilon )}\Vert e(\tau )\Vert _{\infty }, \quad \alpha ,\beta >-1. \end{aligned}$$
(B.3)

Thus, combining Eqs. (B.1)–(B.3) and taking account of N sufficiently large leads to Eq. (46). \(\square \)

Appendix C: Proof of Theorem 6

Proof

It follows from Eq. (45) and the generalized Hardy inequality (see, e.g., [34]) that

$$\begin{aligned} \Vert e(\tau )\Vert _{\omega ^{(\alpha ,\beta )}}\le \, C\sum _{j=1}^{2}\Vert {\mathcal {E}}_{j}(\tau )\Vert _{\omega ^{(\alpha ,\beta )}}. \end{aligned}$$
(C.1)

Now, using Lemma 2, we have

$$\begin{aligned} \Vert {\mathcal {E}}_{1}(\tau )\Vert _{\omega ^{(\alpha ,\beta )}}\le \, CN^{-m}|g(\tau )|_{H_{\omega ^{(\alpha ,\beta )}}^{m;N} (-1,+1)}, \quad \alpha ,\beta >-1. \end{aligned}$$
(C.2)

Next, it follows from Eq. (B.3) that

$$\begin{aligned} \Vert {\mathcal {E}}_{2}(\tau )\Vert _{\omega ^{(\alpha ,\beta )}}\,\le & {} \, \Vert {\mathcal {E}}_{2}(\tau )\Vert _\infty \nonumber \\\le & {} \,CN^{-(\lfloor \gamma \rfloor +\varepsilon )}\Vert e(\tau )\Vert _{\infty }, \quad \alpha ,\beta >-1. \end{aligned}$$
(C.3)

Thus, combining Eqs. (C.1)–(C.3) and recalling the estimate of \(\Vert e(\tau )\Vert _{\infty }\) in Eq. (46) leads to Eq. (47) provided that N is sufficient large. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Shi, Y. & Xu, H. Well Conditioned Pseudospectral Schemes with Tunable Basis for Fractional Delay Differential Equations. J Sci Comput 74, 920–936 (2018). https://doi.org/10.1007/s10915-017-0473-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0473-0

Keywords

Mathematics Subject Classification

Navigation