Advertisement

Journal of Scientific Computing

, Volume 65, Issue 2, pp 790–820 | Cite as

High Order Boundary Conditions for High Order Finite Difference Schemes on Curvilinear Coordinates Solving Compressible Flows

  • Zhen-sheng Sun
  • Yu-xin Ren
  • Bai-lin Zha
  • Shi-ying Zhang
Article

Abstract

In the present paper, high order boundary conditions for high order finite difference schemes on curvilinear coordinates are implemented and analyzed. The finite difference scheme employed in the present paper is a conservative scheme on a finite volume type grid arrangement for which the implementation of the boundary conditions is characterized by a proper evaluation of the numerical fluxes at the boundaries. Simple extrapolation procedures dealing with both the inviscid and viscous fluxes at the boundary are proposed. Specifically, for the inviscid fluxes, a characteristic-variable-based extrapolation procedure is adopted, which effectively reduces the numerical reflection at the far-field boundaries. The emphasis of the present paper is to design straightforward and efficient numerical boundary closure procedures which are capable of achieving high order of accuracy near the boundaries. Special attention is paid to the influence of the extrapolation accuracy on the overall accuracy of the scheme. Numerical results show that the finite difference scheme can achieve its nominal order accuracy when the extrapolation accuracy is sufficiently high.

Keywords

High order boundary conditions Navier–Stokes equations General curvilinear coordinates High order finite difference schemes 

Notes

Acknowledgments

This work is supported by the National Nature Science Foundation of China (Grant No. 11302250).

References

  1. 1.
    Thompson, K.W.: Time-dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987)CrossRefGoogle Scholar
  2. 2.
    Thompson, K.W.: Time-dependent boundary conditions for hyperbolic systems II. J. Comput. Phys. 89, 439–461 (1990)CrossRefGoogle Scholar
  3. 3.
    Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–139 (1992)CrossRefGoogle Scholar
  4. 4.
    Kim, J.W., Lee, D.J.: Generalized characteristic boundary conditions for computational aeroacoustics, Part 2. AIAA J. 42(1), 47–55 (2004)CrossRefGoogle Scholar
  5. 5.
    Chen, D.X., Zha, G.C.: Implicit application of the non-reflective boundary conditions for Navier–Stokes equations in generalized coordinates. Int. J. Numer. Methods Fluids 50, 767–793 (2006)CrossRefGoogle Scholar
  6. 6.
    landmann, B., Haselbacher, A., Chao, J., Yu, C.: Characteristic boundary conditions for compressible viscous flow on curvilinear grids. AIAA paper, 2010-1084Google Scholar
  7. 7.
    Baum, M., Poinsot, T.J., Thévenin, D.: Accurate boundary conditions for multi-component reactive flows. J. Comput. Phys. 176, 247–261 (1994)Google Scholar
  8. 8.
    Okong’o, N., Bellan, J.: Consistent boundary conditions for multi-component real gas mixtures based on characteristic waves. J. Comput. Phys. 176, 330–344 (1994)CrossRefGoogle Scholar
  9. 9.
    Yoo, C.S., Im, H.G.: Characteristic boundary conditions for simulations of compressible reacting flows with multidimensional, viscous, and reaction effects. Combust. Theor. Model. 11, 259–286 (2007)CrossRefGoogle Scholar
  10. 10.
    Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact scheme. J. Comput. Phys. 111, 220–236 (1994)CrossRefGoogle Scholar
  11. 11.
    Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21, 57–79 (2004)CrossRefGoogle Scholar
  12. 12.
    Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218, 333–352 (2006)CrossRefGoogle Scholar
  13. 13.
    Svärd, M., Nordström, J.: A stable high-order finite difference scheme for the compressible Navier-Stokes equations, wall boundary conditions. J. Comput. Phys. 227, 4805–4824 (2008)CrossRefGoogle Scholar
  14. 14.
    Svärd, M., Mattsson, K., Nordström, J.: Steady state computations using summation-by-part operators. J. Sci. Comput. 24, 79–95 (2005)CrossRefGoogle Scholar
  15. 15.
    Svärd, M., Carpenter, M., Nordström, J.: A stable high order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions. J. Comput. Phys. 225, 1020–1038 (2007)CrossRefGoogle Scholar
  16. 16.
    Bodony, D.J.: Accuracy of the simultaneous-approximation-term boundary condition for time-dependent problems. J. Sci. Comput. 43, 118–133 (2010)CrossRefGoogle Scholar
  17. 17.
    Gustafsson, B.: The convergence rate for difference approximations to mixed initial boundary value problems. Math. Comput. 49, 396–406 (1975)CrossRefGoogle Scholar
  18. 18.
    Thomas, J.L., Salas, M.D.: Far-field boundary conditions for transonic lifting solutions to the Euler equations. AIAA J. 24, 1074–1080 (1993)CrossRefGoogle Scholar
  19. 19.
    Colonius, T.: Numerically nonreflecting boundary and interface conditions for compressible flow and aeroacoustic computations. AIAA J. 35, 1126–1133 (1997)CrossRefGoogle Scholar
  20. 20.
    Hagstrom, T., Nordström, J.: Analysis of extrapolation boundary conditions for the linearized Euler equations. Appl. Numer. Math. 44, 95–108 (2003)CrossRefGoogle Scholar
  21. 21.
    Shen, Y.Q., Zha, G.C., Wang, B.Y.: Improvement of stability and accuracy of implicit WENO scheme. AIAA J. 47, 331–344 (2009)CrossRefGoogle Scholar
  22. 22.
    Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)CrossRefGoogle Scholar
  23. 23.
    Chung, T.J.: Computational Fluid Dynamics, 2nd edn. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  24. 24.
    Vinokur, M.: An analysis of finite-difference and finite-volume formulations of conservation laws. J. Comput. Phys. 81, 1–52 (1989)CrossRefGoogle Scholar
  25. 25.
    Shen, Y.Q., Yang, B.Y., Zha, G.C.: Implicit WENO scheme and high order viscous formulas for compressible flows. AIAA paper, 2007–4431Google Scholar
  26. 26.
    Visbal, M.R., Gaitonde, D.V.: On the use of high-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155–185 (2002)CrossRefGoogle Scholar
  27. 27.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing scheme II. J. Comput. Phys. 83, 32–78 (1989)CrossRefGoogle Scholar
  28. 28.
    Jameson, A., Turkel, E.: Implicit scheme and LU- decompositions. Math. Comput. 37, 385–397 (1981)Google Scholar
  29. 29.
    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)CrossRefGoogle Scholar
  30. 30.
    Ren, Y.X., Liu, M., Zhang, H.X.: A characteristic-wise compact WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 330–344 (2003)CrossRefGoogle Scholar
  31. 31.
    Sun, Z.S., Ren, Y.X., Zhang, S.Y., Yang, Y.C.: High-resolution finite difference schemes using curvilinear coordinate grids for DNS of compressible turbulent flow over wavy walls. Comput. Fluids 45, 84–91 (2011)CrossRefGoogle Scholar
  32. 32.
    Sun, Z.S., Ren, Y.X.: The development of the characteristic-wise hybrid compact-WENO scheme for solving the Euler and Navier–Stokes equations. CFD Rev. 2010, 279–297 (2010)Google Scholar
  33. 33.
    Thomas, P.D., Lombard, C.K.: Geometrical conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030–1037 (1979)CrossRefGoogle Scholar
  34. 34.
    Hixon, R.: Numerically consistent strong conservation grid motion for finite difference schemes. AIAA J. 38(9), 1586–1593 (2000)CrossRefGoogle Scholar
  35. 35.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)CrossRefGoogle Scholar
  36. 36.
    Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Appl. Math. Sci. 152, 152–154 (2003)Google Scholar
  37. 37.
    Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 439–471 (2005)CrossRefGoogle Scholar
  38. 38.
    Lukáĉvá-Medvid ová, M., Saibertová, J., Warnecke, G.: Finite volume evolution Galerkin methods for nonlinear hyperbolic systems. J. Comput. Phys. 183, 533–562 (2002)CrossRefGoogle Scholar
  39. 39.
    Nordström, J., Svärd, M.: Well-posed boundary conditions for the Navier–Stokes equations. SIAM J. Numer. Anal. 43(3), 1231–1255 (2005)CrossRefGoogle Scholar
  40. 40.
    Dolejší, V., Feistauer, M.: A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J. Comput. Phys. 198, 724–746 (2004)Google Scholar
  41. 41.
    Michalak, C., Ollivier-Gooch, C.: Accuracy preserving limiter for the high-order accurate solution of the Euler equations. J. Comput. Phys. 228, 8693–8711 (2009)CrossRefGoogle Scholar
  42. 42.
    Prosser, R.: Improved boundary conditions for the direct numerical simulation of turbulent subsonic flows, I. Inviscid flows. J. Comput. Phys. 207, 736–768 (2005)CrossRefGoogle Scholar
  43. 43.
    Daru, V., Tenaud, C.: Evaluation of TVD high resolution schemes for unsteady viscous shocked flows. Comput. Fluids 30, 89–113 (2001)CrossRefGoogle Scholar
  44. 44.
    Sun, Z.S., Ren, Y.X., Larriaq, C., Zhang, S.Y., Yang, Y.C.: A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence. J. Comput. Phys. 230, 4616–4635 (2011)CrossRefGoogle Scholar
  45. 45.
    Coleman, G.N., Kim, J., Moser, R.D.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159–183 (1995)CrossRefGoogle Scholar
  46. 46.
    Wei, L., Pollard, A.: Direct numerical simulation of compressible turbulent channel flows using the discontinuous Galerkin method. Comput. Fluids 47, 85–100 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zhen-sheng Sun
    • 1
    • 2
  • Yu-xin Ren
    • 2
  • Bai-lin Zha
    • 1
  • Shi-ying Zhang
    • 1
  1. 1.Xi’an Research Institute of High-techXi’anChina
  2. 2.Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations