Skip to main content
Log in

An Entropy Stable Finite Volume Scheme for the Equations of Shallow Water Magnetohydrodynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we design an entropy stable, finite volume approximation for the shallow water magnetohydrodynamics (SWMHD) equations. The method is novel as we design an affordable analytical expression of the numerical interface flux function that exactly preserves the entropy, which is also the total energy for the SWMHD equations. To guarantee the discrete conservation of entropy requires a special treatment of a consistent source term for the SWMHD equations. With the goal of solving problems that may develop shocks, we determine a dissipation term to guarantee entropy stability for the numerical scheme. Numerical tests are performed to demonstrate the theoretical findings of entropy conservation and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balsara, D.S., Spicer, D.S.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws vol. 5 of Lecture Notes in Computational Science and Engineering, pp. 195–285. Springer, Berlin (1999)

    Chapter  Google Scholar 

  3. Carpenter, M., Fisher, T., Nielsen, E., Frankel, S.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36, B835–B867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carpenter, M., Kennedy, C.: Fourth-order 2N-storage Runge–Kutta schemes. Tech. Rep. NASA TM 109111, NASA Langley Research Center (1994)

  5. de Sterck, H.: Hyperbolic theory of the shallow water magnetohydrodynamics equations. Phys. Plasmas 8, 3293–3304 (2001)

    Article  MathSciNet  Google Scholar 

  6. Dellar, P.J.: Hamiltonian and symmetric hyperbolic structures of shallow water magnetohydrodynamics. Phys. Plamas 9, 1130–1136 (2002)

    Article  MathSciNet  Google Scholar 

  7. Dikpati, M., Gilman, P.A.: Flux-transport dynamos with \(\alpha \)-effect from global instability of tachocline differential rotation: a solution for magnetic parity selection in the Sun. Astrophys. J. 559, 428–442 (2001)

    Article  Google Scholar 

  8. Dikpati, M., Gilman, P.A.: Prolateness of the solar tachocline inferred from latitudinal force balance in a magnetohydrodynamic shallow-water model. Astrophys. J. 552, 348–353 (2001)

    Article  Google Scholar 

  9. Fjordholm, U.S., Mishra, S., Tadmor, E.: Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230, 5587–5609 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50, 544–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gassner, G.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35, A1233–A1253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. (2014). doi:10.1016/j.amc.2015.07.014

  13. Gilman, P.A.: Magnetohydrodynamic “shallow water” equations for the solar tachocline. Astrophys. J. 544, L79–L82 (2000)

    Article  Google Scholar 

  14. Godunov, S.K.: The symmetric form of magnetohydrodynamics equation. Numer. Methods Mech. Contin. Media 1, 26–34 (1972)

    Google Scholar 

  15. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228, 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janhunen, P.: A positive conservative method for magnetohydrodynamics based on HLL and Roe methods. J. Comput. Phys. 160, 649–661 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kemm, F.: Roe-type schemes for shallow water magnetohydrodynamics with hyperbolic divergence cleaning (2014). arXiv:1410.1427

  18. Kröger, T., Lukáčová-Medvid’ová, M.: An evolution Galerkin scheme for the shallow water magnetohydrodynamic equations in two space dimensions. J. Comput. Phys. 206, 122–149 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 263–283 (1960)

    MathSciNet  MATH  Google Scholar 

  20. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  21. Merriam, M.L.: An entropy-based approach to nonlinear stability. NASA Tech. Memo. 101086, 1–154 (1989)

    MathSciNet  Google Scholar 

  22. Powell, K.G.: An Approximate Riemann Solver for Magnetohydrodynamics (That Works More than One Dimension). Tech. rep., DTIC Document (1994)

  23. Roe, P.L., Balsara, D.S.: Notes on the eigensystem of magnetohydrodynamics. SIAM J. Appl. Math. 56, 57–67 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rossmanith, J.A.: A Wave Propagation Method with Constrained Transport for Ideal and Shallow Water Magnetohydrodynamics. PhD thesis, University of Washington (2002)

  25. Tadmor, E.: Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput. 43, 369–381 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tadmor, E.: The numerical viscosity of entropy stable schems for systems of conservation laws I. Math. Comput. 49, 91–103 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tóth, G.: The \(\nabla \cdot {B}=0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Winters, A.R., Gassner, G.J.: A comparison of two entropy stable discontinuous Galerkin spectral element approximations for the shallow water equations with non-constant topography. J. Comput. Phys. (2014, under review)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Winters.

Appendix: Flux Functions in Two Spatial Dimensions

Appendix: Flux Functions in Two Spatial Dimensions

We note that, for the discussion of the two dimension fluxes we suppress the i index on the multidimensional approximation for the purpose of clarity.

1.1 Entropy Conservative Flux

To develop the entropy conservative flux in the y-direction we first note that the entropy potential

$$\begin{aligned} \psi _y = \varvec{v}\cdot \varvec{g} - G = \frac{g}{2}h^2v_2 - hB_2(v_1B_1 + v_2B_2), \end{aligned}$$
(7.2)

where we have the entropy flux in the y-direction

$$\begin{aligned} G = gh^2v_2 + \frac{1}{2}\left( hv_1^2v_2 + hv_2^3 + hv_2B_1^2 - hv_2B_2^2\right) - hv_1B_1B_2. \end{aligned}$$
(7.3)

Note that the discrete entropy conservation condition (4.11) has the same structure in each Cartesian direction. Lastly, the source term contributes symmetrically to each direction. With a proof analogous of that for \(\varvec{f}^{*,ec}\) in Sect. 5 we present the entropy conserving numerical flux for the y-direction.

Corollary 1

(Entropy Conserving Numerical Flux: y-direction) If we discretize the source term in the finite volume method to contribute to each element as

(7.4)

then we can determine a discrete, entropy conservative flux of the form

(7.5)

1.2 Entropy Stable Fluxes

Just as was done in Sect. 5.2 we can create 2D entropy stable flux functions. We, again, use the flux Jacobian altered by the Powell source term to create the dissipation term:

$$\begin{aligned} \widehat{\mathbf{B }} = \begin{bmatrix} 0&\quad 0&\quad 1&\quad 0&\quad 0 \\ -v_1v_2+B_1B_2&\quad v_2&\quad v_1&\quad -B_2&\quad 0 \\ gh - v_2^2 + B_2^2&\quad 0&\quad 2v_2&\quad 0&\quad -B_2 \\ v_1B_2 - v_2B_1&\quad -B_2&\quad B_1&\quad v_2&\quad 0 \\ 0&\quad 0&\quad 0&\quad 0&\quad v_2 \\ \end{bmatrix}, \end{aligned}$$
(7.6)

equipped with a full set of eigenvalues

$$\begin{aligned} \lambda _1 = v_2-c_g,\quad \lambda _2 = v_2-B_2,\quad \lambda _3 = v_2,\quad \lambda _4 = v_2+B_2,\quad \lambda _5 = v_2+c_g, \end{aligned}$$
(7.7)

and right eigenvectors

$$\begin{aligned} \widehat{\mathbf{R }}_y = \begin{bmatrix} 1&\quad 0&\quad 1&\quad 0&\quad 1 \\ v_1&\quad 1&\quad v_1&\quad 1&\quad v_1\\ v_2-c_g&\quad 0&\quad v_2&\quad 0&\quad v_2+c_g \\ B_1&\quad 1&\quad B_1&\quad -1&\quad B_1 \\ 0&\quad 0&\quad \frac{c_g^2}{B_2}&\quad 0&\quad 0 \end{bmatrix}, \quad \widehat{\mathbf{L }}_y = \widehat{\mathbf{R }}_y^{-1}, \end{aligned}$$
(7.8)

where \(c_g^2 = gh+B_2^2\) is the magnetogravity wave speed.

Corollary 2

(Entropy Stable 1 (ES1): y-direction) If we apply the diagonal scaling matrix

$$\begin{aligned} \mathbf T _y = diag\left( \frac{c}{c_g\sqrt{2g}},\,\frac{c}{\sqrt{2g}},\,\frac{B_2}{c_g\sqrt{g}},\,\frac{c}{\sqrt{2g}},\,\frac{c}{c_g\sqrt{2g}}\right) , \end{aligned}$$
(7.9)

to the matrix of right eigenvectors \(\widehat{\mathbf{R }}_y\) (7.8), then we obtain the Merriam identity [21] (Eq. 7.3.1 pg. 77)

$$\begin{aligned} \mathbf H = \widetilde{\mathbf{R }}_y\widetilde{\mathbf{R }}_y^T = \left( \widehat{\mathbf{R }}_y\mathbf T _y\right) \left( \widehat{\mathbf{R }}_y\mathbf T _y\right) ^T = \widehat{\mathbf{R }}_y\mathbf S _y\widehat{\mathbf{R }}_y^T, \end{aligned}$$
(7.10)

that relates the right eigenvectors of \(\widehat{\mathbf{B }}\) to the entropy Jacobian matrix (4.4). For convenience, we introduce the diagonal scaling matrix \(\mathbf S _y=\mathbf T \,^2\!\!\!\!_y\) in (7.10). We then have the guaranteed entropy stable flux interface contribution

$$\begin{aligned} \varvec{g}^{*,ES1} = \varvec{g}^{*,ec}-\frac{1}{2}\mathbf D \llbracket \varvec{u} \rrbracket =\varvec{g}^{*,ec} - \frac{1}{2} \widehat{\mathbf{R }}_y|\widehat{{\varvec{\varLambda }}}|\mathbf S _y\widehat{\mathbf{R }}_y^T\llbracket \varvec{q} \rrbracket . \end{aligned}$$
(7.11)

Remark 4

(Entropy Stable 2 (ES2): y-direction) If we choose the dissipation matrix to be

$$\begin{aligned} \mathbf D = |\lambda _{max}|\mathbf I , \end{aligned}$$
(7.12)

where \(\lambda _{max}\) is the largest eigenvalue of the system from \(\widehat{\mathbf{B }}\) and \(\mathbf I \) is the identity matrix, then we obtain a local Lax-Friedrichs type interface stabilization

$$\begin{aligned} \begin{aligned} \varvec{g}^{*,ES2}&= \varvec{g}^{*,ec} - \frac{1}{2}|\lambda _{max}|\mathbf H \llbracket \varvec{q} \rrbracket . \end{aligned} \end{aligned}$$
(7.13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winters, A.R., Gassner, G.J. An Entropy Stable Finite Volume Scheme for the Equations of Shallow Water Magnetohydrodynamics. J Sci Comput 67, 514–539 (2016). https://doi.org/10.1007/s10915-015-0092-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0092-6

Keywords

Navigation