# High Order Boundary Extrapolation Technique for Finite Difference Methods on Complex Domains with Cartesian Meshes

## Abstract

The application of suitable numerical boundary conditions for hyperbolic conservation laws on domains with complex geometry has become a problem with certain difficulty that has been tackled in different ways according to the nature of the numerical methods and mesh type. In this paper we present a technique for the extrapolation of information from the interior of the computational domain to ghost cells designed for structured Cartesian meshes (which, as opposed to non-structured meshes, cannot be adapted to the morphology of the domain boundary). This technique is based on the application of Lagrange interpolation with a filter for the detection of discontinuities that permits a data dependent extrapolation, with higher order at smooth regions and essentially non oscillatory properties near discontinuities.

## Keywords

Finite difference WENO schemes Cartesian grids Extrapolation## References

- 1.Aràndiga, F., Baeza, A., Belda, A.M., Mulet, P.: Analysis of WENO schemes for full and global accuracy. SIAM J. Numer. Anal.
**49**(2), 893–915 (2011)CrossRefMathSciNetMATHGoogle Scholar - 2.Baeza, A., Mulet, P.: Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations. Int. J. Numer. Methods Fluids
**52**, 455–471 (2006)CrossRefMathSciNetMATHGoogle Scholar - 3.Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys.
**82**, 64–84 (1989)CrossRefMATHGoogle Scholar - 4.Boiron, O., Chiavassa, G., Donat, R.: A high-resolution penalization method for large Mach number flows in the presence of obstacles. Comput. Fluids
**38**, 703–714 (2009). doi: 10.1016/j.compfluid.2008.07.003 CrossRefMathSciNetMATHGoogle Scholar - 5.Faà di Bruno, C.F.: Note sur un nouvelle formule de calcul différentiel. Q. J. Math.
**1**, 359–360 (1857)Google Scholar - 6.Carpenter, M., Gottlieb, D., Abarbanel, S., Don, W.S.: The theoretical accuracy of Runge–Kutta time discretizations for the initial boundary value problem: a study of the boundary error. SIAM J. Sci. Comput.
**16**, 1241–1252 (1995)CrossRefMathSciNetMATHGoogle Scholar - 7.Donat, R., Marquina, A.: Capturing shock reflections: an improved flux formula. J. Comput. Phys.
**125**, 42–58 (1996)CrossRefMathSciNetMATHGoogle Scholar - 8.Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118. Springer, New York (1996). doi: 10.1007/978-1-4612-0713-9 CrossRefGoogle Scholar
- 9.Gustafsson, B., Kreiss, H.O., Oliger, J.: Time Dependent Problems and Difference Methods. Pure and Applied Mathematics. Wiley, New York (1995). A Wiley-Interscience PublicationGoogle Scholar
- 10.Gustafsson, B., Kreiss, H.O., Sundström, A.: Stability theory of difference approximations for mixed initial boundary value problems. II. Math. Comput.
**26**, 649–686 (1972)CrossRefMATHGoogle Scholar - 11.Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes. III. J. Comput. Phys.
**71**(2), 231–303 (1987)CrossRefMathSciNetMATHGoogle Scholar - 12.Huang, L., Shu, C.W., Zhang, M.: Numerical boundary conditions for the fast sweeping high order WENO methods for solving the Eikonal equation. J. Comput. Math.
**26**, 336–346 (2008)MathSciNetMATHGoogle Scholar - 13.Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys.
**126**, 202–228 (1996)CrossRefMathSciNetMATHGoogle Scholar - 14.Marquina, A., Mulet, P.: A flux-split algorithm applied to conservative models for multicomponent compressible flows. J. Comput. Phys.
**185**, 120–138 (2003)CrossRefMathSciNetMATHGoogle Scholar - 15.Oliger, J., Sundström, A.: Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math.
**35**(3), 419–446 (1978)CrossRefMathSciNetMATHGoogle Scholar - 16.Pletcher, R.H., Tannehill, J.C., Anderson, D.: Computational Fluid Mechanics and Heat Transfer, 3rd edn. CRC Press, Boca Raton (2012)Google Scholar
- 17.Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys.
**77**, 439–471 (1988)CrossRefMathSciNetMATHGoogle Scholar - 18.Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J. Comput. Phys.
**83**(1), 32–78 (1989)CrossRefMathSciNetMATHGoogle Scholar - 19.Sjogreen, B., Petersson, N.: A Cartesian embedded boundary method for hyperbolic conservation laws. Commun. Comput. Phys.
**2**, 1199–1219 (2007)MathSciNetGoogle Scholar - 20.Tan, S., Shu, C.W.: Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput. Phys.
**229**, 8144–8166 (2010)CrossRefMathSciNetMATHGoogle Scholar - 21.Tan, S., Wang, C., Shu, C.W., Ning, J.: Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws. J. Comput. Phys.
**231**(6), 2510–2527 (2012)CrossRefMathSciNetMATHGoogle Scholar - 22.Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys.
**54**, 115–173 (1984)CrossRefMathSciNetMATHGoogle Scholar - 23.Xiong, T., Zhang, M., Zhang, Y.T., Shu, C.W.: Fast sweeping fifth order WENO scheme for static Hamilton-Jacobi equations with accurate boundary treatment. J. Sci. Comput.
**45**, 514–536 (2010)CrossRefMathSciNetMATHGoogle Scholar - 24.Yee, H.C.: Numerical approximation of boundary conditions with applications to inviscid equations of gas dynamics. Technical report N81–19834, NASA (1981)Google Scholar