Skip to main content
Log in

Simple Finite Element Numerical Simulation of Incompressible Flow Over Non-rectangular Domains and the Super-Convergence Analysis

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we apply a simple finite element numerical scheme, proposed in an earlier work (Liu in Math Comput 70(234):579–593, 2000), to perform a high resolution numerical simulation of incompressible flow over an irregular domain and analyze its boundary layer separation. Compared with many classical finite element fluid solvers, this numerical method avoids a Stokes solver, and only two Poisson-like equations need to be solved at each time step/stage. In addition, its combination with the fully explicit fourth order Runge–Kutta (RK4) time discretization enables us to compute high Reynolds number flow in a very efficient way. As an application of this robust numerical solver, the dynamical mechanism of the boundary layer separation for a triangular cavity flow with Reynolds numbers \(Re=10^4\) and \(Re=10^5\), including the precise values of bifurcation location and critical time, are reported in this paper. In addition, we provide a super-convergence analysis for the simple finite element numerical scheme, using linear elements over a uniform triangulation with right triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Auteri, F., Parolini, N., Quartapelle, L.: Numerical investigation on the stability of singular driven cavity flow. J. Comput. Phys. 183, 1–25 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barragy, E., Carey, G.F.: Stream function-vorticity driven cavity solution using \(p\) finite elements. Comput. Fluids 26(5), 453–468 (1997)

    Article  MATH  Google Scholar 

  3. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  4. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2010)

    Google Scholar 

  5. Bruneau, C.-H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35, 326–348 (2006)

    Article  MATH  Google Scholar 

  6. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, Berlin (1997)

    Google Scholar 

  7. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

  8. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    Article  MATH  Google Scholar 

  9. Coupez, T., Hachem, E.: Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing. Comput. Methods Appl. Mech. Eng. 267, 65–85 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Di, Y., Li, R., Tang, T., Zhang, P.: Moving mesh finite element methods for the incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 26, 1036–1056 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. E, W., Liu, J.-G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. E, W., Liu, J.-G.: Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124, 368–382 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Erturk, E., Corke, T., Gokcol, C.: Numerical solutions of 2D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48, 747–774 (2005)

    Article  MATH  Google Scholar 

  14. Erturk, E., Gokcol, O.: Fine grid numerical solutions of triangular cavity flow. Eur. Phys. J. Appl. Phys. 38, 97–105 (2007)

    Article  Google Scholar 

  15. China Fegensoft software company. http://www.fegensoft.com.cn

  16. Center for Applied Scientific Computing of Lawrence Livermore National Lab. https://computation-rnd.llnl.gov/linear_solvers/software.php

  17. Gargano, F., Sammartino, M., Sciacca, V.: High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex. Comput. Fluids 52, 73–91 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ge, L., Sotiropoulos, F.: A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225, 1782–1809 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. George, A., Huang, L.C., Tang, W., Wu, Y.: Numerical simulation of unsteady incompressible flow \((Re\le 9500)\) on the curvilinear half-staggered mesh. SIAM J. Sci. Comput. 21(6), 2331–2351 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ghia, U., Ghia, K., Shin, C.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  21. Ghil, M., Liu, J.-G., Wang, C., Wang, S.: Boundary-layer separation and adverse pressure gradient for 2-D viscous incompressible flow. Phys. D 197, 149–173 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ghil, M., Ma, T., Wang, S.: Structure of 2-D incompressible flows with the Dirichlet boundary conditions. Discrete Contin. Dyn. Syst. B 1, 29–41 (2001)

    Article  Google Scholar 

  23. Ghil, M., Ma, T., Wang, S.: Structural bifurcation of 2-D nondivergent flows with Dirichlet boundary condition: applications to boundary-layer separation. SIAM J. Appl. Math. 65(5), 1576–1596 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Girault, V., Raviart, P.: Finite Element Method for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  Google Scholar 

  25. Girault, V., Riviére, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comput. 74, 53–84 (2005)

    Article  MATH  Google Scholar 

  26. Goldstein, S.: Modern Developments in Fluid Fynamics. Dover Publications, New York (1965)

    Google Scholar 

  27. Gonzalez, L.M., Ahmed, M., Kuhnen, J.: Three-dimensional flow instability in a lid-driven isosceles triangular cavity. J. Fluid Mech. 675, 369–396 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hachem, E., Rivaux, B., Kloczko, T., Digonnet, H., Coupez, T.: Stabilized finite element method for incompressible flows with high Reynolds number. J. Comput. Phys. 229, 8643–8665 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. He, Y.: Euler implicit/explicit iterative scheme for the stationary Navier–Stokes equations. Numer. Math. 123, 67–96 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–310 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Holdeman, J.T.: A Hermite finite element for incompressible fluid flow. Int. J. Numer. Methods Fluids 64, 376–408 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Huang, Y., Liu, J.-G., Wang, W.: A generalized MAC scheme on curvilinear domains. SIAM J. Sci. Comput. 35(5), 953–986 (2013)

    Article  MathSciNet  Google Scholar 

  33. Jagannathan, A., Mohan, R., Dhanak, M.: A spectral method for the triangular cavity flow. Comput. Fluids 95, 40–48 (2014)

    Article  MathSciNet  Google Scholar 

  34. Johnston, H., Liu, J.-G.: A finite difference scheme for incompressible flow based on local pressure boundary conditions. J. Comput. Phys. 180, 120–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Johnston, H., Liu, J.-G.: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys. 199, 221–259 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kalita, J.C., Sen, S.: The biharmonic approach for unsteady flow past an impulsively started circular cylinder. Commun. Comput. Phys. 12, 1163–1182 (2012)

    MathSciNet  Google Scholar 

  37. Koumoutsakost, P., Leonard, A.: High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 1–38 (1995)

    Article  Google Scholar 

  38. Lai, M.-J., Wenston, P.: Bivariate splines for fluid flows. Comput. Fluids 33, 1047–1073 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Layton, W., Lee, H., Peterson, J.: A defect-correction method for the incompressible Navier–Stokes equations. Appl. Math. Comput. 129, 1–19 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Li, M., Tang, T.: Steady viscous flow in a triangular cavity by efficient numerical techniques. Comput. Math. Appl. 31(10), 55–65 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Li, Z., Wang, C.: A fast finite difference method for solving Navier–Stokes equations on irregular domains. Commun. Math. Sci. 1(1), 181–197 (2003)

    Article  Google Scholar 

  42. Lin, Q., Yan, N.: Structure and Analysis for Efficient Finite Element Methods. Publishers of Hebei University, Baoding (1996). (in Chinese)

    Google Scholar 

  43. Liu, J.-G., E, W.: Simple finite element methods in vorticity formulation for incompressible flows. Math. Comput. 70(234), 579–593 (2000)

  44. Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory. Chapman and Hall, London (1999)

    MATH  Google Scholar 

  45. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38, 437–445 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  46. Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space–time discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 233, 339–358 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ribbens, C.J., Watson, L.T., Wang, C.-Y.: Steady viscous flow in a triangular cavity. J. Comput. Phys. 112(1), 173–181 (1994)

    Article  MATH  Google Scholar 

  48. Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J. Comput. Phys. 222, 391–407 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wang, K., Wong, Y.S.: Error correction method for Navier–Stokes equations at high Reynolds numbers. J. Sci. Comput. 255, 245–265 (2013)

    MathSciNet  Google Scholar 

  50. Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, China (2005)

    Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate many helpful discussions with Wenbin Chen, Sigal Gottlieb, Yuan Liu and Chi-Wang Shu, in particular for their insightful suggestion and comments. This work is supported in part by the NSF DMS-1115420 NSF DMS-1418689 (C. Wang), NSFC 11271281 (C. Wang), NSFC 11171168 (Y. Xue) and the fund by China Scholarship Council (Y. Xue). Y. Xue thanks University of Massachusetts Dartmouth, for support during his visit. C. Wang also thanks Shanghai Center for Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, for support during his visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Wang, C. & Liu, JG. Simple Finite Element Numerical Simulation of Incompressible Flow Over Non-rectangular Domains and the Super-Convergence Analysis. J Sci Comput 65, 1189–1216 (2015). https://doi.org/10.1007/s10915-015-0005-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0005-8

Keywords

Mathematics Subject Classification

Navigation