Skip to main content
Log in

Variational Dynamics of Free Triple Junctions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a level set framework for representing triple junctions either with or without free endpoints. For triple junctions without free endpoints, our method uses two level set functions to represent the three segments that constitute the structure. For free triple junctions, we extend our method using the free curve work of Schaeffer and Vese (J Math Imaging Vis, 1–17, 2013), Smereka (Phys D Nonlinear Phenom 138(3–4):282–301, 2000). For curves moving under length minimizing flows, it is well known that the endpoints either intersect perpendicularly to the boundary, do not intersect the boundary of the domain or the curve itself (free endpoints), or meet at triple junctions. Although many of these cases can be formulated within the level set framework, the case of free triple junctions does not appear in the literature. Therefore, the proposed free triple junction formulation completes the important curve structure representations within the level set framework. We derive an evolution equation for the dynamics of the triple junction under length and area minimizing flow. The resulting system of partial differential equations are both coupled and highly non-linear, so the system is solved numerically using the Sobolev preconditioned descent. Qualitative numerical experiments are presented on various triple junction and free triple junction configurations, as well as an example with a quadruple junction instability. Quantitative results show convergence of the preconditioned algorithm to the correct solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Almgren, F., Taylor, J., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31(2), 387–438 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bar, L., Sapiro, G.: Generalized Newton-type methods for energy formulations in image processing. SIAM J. Imaging Sci. 2(2), 508 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bucur, D., Buttazzo, G., Varchon, N.: On the problem of optimal cutting. SIAM J. Optim. 13(1), 157–167 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caselles, R., Kimmel, V., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)

    Article  Google Scholar 

  7. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  8. Chung, G., Vese, L.A.: Energy minimization based segmentation and denoising using a multilayer level set approach. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 439–455. Springer, Berlin (2005)

  9. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)

    Article  Google Scholar 

  10. Concus, P., Golub, G.H.: Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. SIAM J. Numer. Anal. 10(6), 1103–1120 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  11. Crandall, M.G., Evans, L.C., Gariepy, R.F.: Optimal lipschitz extensions and the infinity laplacian. Calc. Var. Partial Differ. Equ. 13(2), 123–139 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures based on local minimization. ArXiv Mathematics e-prints, June (2002)

  13. Esedoglu, S., Ruuth, S., Tsai, R.: Diffusion generated motion using signed distance functions. J. Comput. Phys. 229(4), 1017–1042 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Esedoglu, S., Smereka, P.: A variational formulation for a level set representation of multiphase flow and area preserving curvature flow. Commun. Math. Sci. 6(1), 125–148 (2008)

    Article  MathSciNet  Google Scholar 

  15. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL (1992)

    MATH  Google Scholar 

  16. Evans, L.C., Yu, Y.: Various properties of solutions of the Infinity-Laplacian equation. Commun. Partial Differ. Equ. 30(9), 1401–1428 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jung, M., Chung, G., Sundaramoorthi, G., Vese, L.A., Yuille, A.L.: Sobolev gradients and joint variational image segmentation, denoising, and deblurring. Proc. SPIE, 7246(1), 72460I–72460I-13 (2009)

    Google Scholar 

  18. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  19. Kimmel, R., Bruckstein, A.M.: Regularized laplacian zero crossings as optimal edge integrators. Int. J. Comput. Vis. 53, 225–243 (2001)

    Article  Google Scholar 

  20. Lacoste, C., Descombes, X., Zerubia, J.: Unsupervised line network extraction in remote sensing using a polyline process. Pattern Recogn. 43(4), 1631–1641 (2010)

    Article  MATH  Google Scholar 

  21. Larsen, C.J., Richardson, C.L., Sarkis, M.: A level set method for the mumford -Shah functional and fracture. Preprint serie A, Instituto Nacional de Matemática Pura e Aplicada, Brazilian Ministry for Science and Technology (2008)

  22. Li, H., X-C T.: Piecewise constant level set methods for multiphase motion. Int. J. Numer. Anal. Mod. 4(2), 291–305 (2007)

    Google Scholar 

  23. Lu, G., Wang, P.: Inhomogeneous infinity laplace equation. Adv. Math. 217(4), 1838–1868 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. Pattern Anal. Mach. Intell. IEEE Trans. 30(3), 412–423 (2008)

    Google Scholar 

  25. Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)

    Article  MathSciNet  Google Scholar 

  26. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Neuberger, J.W.: Sobolev Gradients and Differential Equations. Springer, Berlin (2009)

    Google Scholar 

  28. Oberman, A.M.: A convergent difference scheme for the infinity laplacian: construction of absolutely minimizing lipschitz extensions. Math. Comput. 74(251), 1217–1230 (2004)

    Article  MathSciNet  Google Scholar 

  29. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Google Scholar 

  30. Reitich, F., Soner, H.M.: Three-phase boundary motion under constant velocities i: the vanishing surface tension limit. Proc. R. Soc. Edinb. 126A, 837–865 (1997)

    MathSciNet  Google Scholar 

  31. Renka, R.J.: A simple explanation of the sobolev gradient method (2006). http://www.cse.unt.edu/~renka/papers/sobolev.pdf

  32. Richardson, W.B.: Sobolev gradient preconditioning for image-processing PDEs. Commun. Numer. Methods Eng. 24(6), 493–504 (2006)

    Article  Google Scholar 

  33. Ruuth, S.J.: A diffusion-generated approach to multiphase motion. J. Comput. Phys. 145(1), 166–192 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ruuth, S.J.: Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput. Phys. 144(2), 603–625 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schaeffer, H.: Active arcs and contours. UCLA CAM Report, pp. 12–54 (2012)

  36. Schaeffer, H., Vese, L.: Active contours with free endpoints. J. Math. Imaging Vis. (2013). doi:10.1007/s10851-013-0437-4

  37. Smereka, P.: Spiral crystal growth. Phys. D Nonlinear Phenom. 138(3–4), 282–301 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion (english). J. Sci. Comput. 19(1–3), 439–456 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  39. Smith, K.A., Solis, F.J., Chopp, D.: A projection method for motion of triple junctions by level sets. Interfaces Free Boundaries 4(3), 263–276 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Sundaramoorthi, G., Yezzi, A., Mennucci, A.C.: Sobolev active contours. Int. J. Comput. Vis. 73(3), 345–366 (2007)

    Article  Google Scholar 

  41. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  42. Taylor, J.E.: A variational approach to crystalline triple-junction motion. J. Stat. Phys. 95, 1221–1244 (1999). doi:10.1023/A:1004523005442

    Google Scholar 

  43. Taylor, J.E.: The motion of multiple-phase junctions under prescribed phase-boundary velocities. J. Differ. Equ. 119(1), 109–136 (1995)

    Article  MATH  Google Scholar 

  44. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  45. Zhao, H.-K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(1), 179–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was made possible by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) and by NSF DMS 1217239. The authors would like to thank Selim Esedoglu for his helpful discussion and the reviewers and editor for their useful comments. The authors would also like to thank Stanley Osher for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayden Schaeffer.

Appendix: Derivation of the First Variation for Free Triple Junctions

Appendix: Derivation of the First Variation for Free Triple Junctions

Let \(\phi ,\psi , \nu \in W^{1,\infty }\), recall the free triple junction Length function

$$\begin{aligned} L_{fT}(\phi ,\psi ,\nu ) = \int \left( l_{+} |\nabla H(\phi )| H(\psi ) + l_{-} |\nabla H(\phi )| H(-\psi ) + l_{0} |\nabla H(\psi )| H(\phi ) \right) H(\nu )dx \end{aligned}$$

To compute the first variation, let \(w \in W^{1,\infty }\) and differentiate the energy with respect to perturbation using these functions. First, to find the minimizer \(\phi \), we fix \(\psi \) and \(\nu \) and define \(G(\varepsilon ):=L_{fT}(\phi +\varepsilon w,\psi ,\nu )\) and compute \(G'(0)=0\).

$$\begin{aligned} \frac{d}{d \varepsilon }G(\varepsilon )&= \frac{d}{d \varepsilon } \int \left( l_{+} |\nabla H(\phi +\varepsilon w)| H(\psi ) + l_{-} |\nabla H(\phi +\varepsilon w)|\right. \\&\quad \quad \left. H(-\psi ) + l_{0} |\nabla H(\psi )| H(\phi +\varepsilon w) \right) H(\nu )dx\\&= \frac{d}{d \varepsilon } \int \left( |\nabla \phi +\varepsilon \nabla w| \delta (\phi + \varepsilon w) \chi + l_{0} |\nabla H(\psi )| H(\phi +\varepsilon w) \right) H(\nu )dx\\&= \int \left( \frac{\nabla \phi +\varepsilon \nabla w}{|\nabla \phi +\varepsilon \nabla w|} \cdot \nabla w \delta (\phi + \varepsilon w) \chi \right. \\&\quad \left. + |\nabla \phi +\varepsilon \nabla w| \delta '(\phi + \varepsilon w) w \chi + l_{0} |\nabla H(\psi )| \delta (\phi +\varepsilon w) w \right) H(\nu )dx \end{aligned}$$

Next setting \(\varepsilon =0\) and integrating by parts (with \(\frac{\partial \phi }{\partial n}=0\) on \(\partial \varOmega \)):

$$\begin{aligned} G'(0)&= \int \left( -\mathrm{div} \left( H(\nu ) \delta (\phi ) \chi \frac{\nabla \phi }{|\nabla \phi |} \right) + |\nabla \phi | \delta '(\phi )\chi + l_{0} |\nabla H(\psi )| \delta (\phi )H(\nu ) \right) wdx\\&= \int \left( -\delta (\phi ) \mathrm{div} \left( H(\nu ) \chi \frac{\nabla \phi }{|\nabla \phi |} \right) + l_{0} |\nabla H(\psi )| \delta (\phi ) H(\nu ) \right) wdx\\&= \int \delta (\phi ) \left( - \mathrm{div} \left( H(\nu ) \chi \frac{\nabla \phi }{|\nabla \phi |} \right) + l_{0} |\nabla H(\psi )| H(\nu ) \right) wdx \end{aligned}$$

Since this holds for all \(w\), the first variation is:

$$\begin{aligned} \delta (\phi ) \left( - \mathrm{div} \left( H(\nu ) \chi \frac{\nabla \phi }{|\nabla \phi |} \right) + l_{0} |\nabla H(\psi )| H(\nu ) \right) =0 \end{aligned}$$

and can be embedded in a time-dependent descent:

$$\begin{aligned} \frac{\partial \phi }{\partial t}= \delta (\phi ) \left( \mathrm{div} \left( H(\nu ) \chi \frac{\nabla \phi }{|\nabla \phi |} \right) - l_{0} |\nabla H(\psi )| H(\nu ) \right) \end{aligned}$$

Next, to find the minimizer \(\psi \), we fix \(\phi \) and \(\nu \) and define \(G(\varepsilon ):=L_{fT}(\phi , \psi +\varepsilon w,\nu )\) and compute \(G'(0)=0\) again.

$$\begin{aligned} \frac{d}{d \varepsilon }G(\varepsilon )&= \frac{d}{d \varepsilon } \int \left( l_{+} |\nabla H(\phi )| H(\psi +\varepsilon w) + l_{-} |\nabla H(\phi )| H(-\psi +\varepsilon w)\right. \\&\quad \left. + l_{0} |\nabla H(\psi +\varepsilon w)| H(\phi ) \right) H(\nu )dx\\&= \frac{d}{d \varepsilon } \int \left( l_{+} |\nabla H(\phi )| H(\psi +\varepsilon w) + l_{-} |\nabla H(\phi )| H(-\psi +\varepsilon w)\right. \\&\quad \left. + l_{0} |\nabla \psi +\varepsilon \nabla w| \delta (\psi +\varepsilon w) H(\phi ) \right) H(\nu )dx\\&= \int \left( \left( l_{+}-l_{-} \right) |\nabla H(\phi )| \delta (\psi +\varepsilon w) w\right. \\&\quad \left. + l_{0} \frac{\nabla \psi +\varepsilon \nabla w}{|\nabla \psi +\varepsilon \nabla w|} \cdot \nabla w \ \delta (\psi +\varepsilon w) H(\phi )\right. \\&\quad \left. + l_{0} |\nabla \psi +\varepsilon \nabla w| \delta '(\psi +\varepsilon w) H(\phi ) w \right) H(\nu )dx \end{aligned}$$

Next setting \(\varepsilon =0\) and integrating by parts (with \(\frac{\partial \psi }{\partial n}=0\) on \(\partial \varOmega \))

$$\begin{aligned} G'(0)&= \int \left( \left( l_{+}-l_{-} \right) |\nabla H(\phi )| H(\nu ) \delta (\psi ) - l_{0} \mathrm{div} \left( \delta (\psi ) H(\phi ) H(\nu ) \frac{\nabla \psi }{|\nabla \psi |} \right) \right. \nonumber \\&\quad \left. + l_{0} |\nabla \psi | \delta '(\psi ) H(\phi ) \right) w dx\\&= \int \delta (\psi ) \left( \left( l_{+}-l_{-} \right) |\nabla H(\phi )| H(\nu )- l_{0} \mathrm{div} \left( H(\phi ) H(\nu ) \frac{\nabla \psi }{|\nabla \psi |} \right) \right) w dx \end{aligned}$$

Since this holds for all \(w\), the first variation with respect to \(\psi \) is:

$$\begin{aligned} \delta (\psi ) \left( \left( l_{+}-l_{-} \right) |\nabla H(\phi )| H(\nu )- l_{0} \mathrm{div} \left( H(\phi ) H(\nu ) \frac{\nabla \psi }{|\nabla \psi |} \right) \right) =0 \end{aligned}$$

and can be embedded in a time-dependent descent:

$$\begin{aligned} \frac{\partial \psi }{\partial t}= \delta (\psi ) \left( l_{0} \mathrm{div} \left( H(\phi ) H(\nu ) \frac{\nabla \psi }{|\nabla \psi |} \right) -\left( l_{+}-l_{-} \right) |\nabla H(\phi )| H(\nu ) \right) \end{aligned}$$

Lastly, to find the minimizer \(\nu \), we may repeat the previous procedure. Note that since in terms of \(\nu \) the functional is:

$$\begin{aligned} L_{fT}(\phi ,\psi ,\nu ) = \int F(\phi ,\psi ) H(\nu )dx =\left< F(\phi ,\psi ), H(\nu )\right>_{L^2} \end{aligned}$$

with \(F(\phi ,\psi )=l_{+} |\nabla H(\phi )| H(\psi ) + l_{-} |\nabla H(\phi )| H(-\psi ) + l_{0} |\nabla H(\psi )| H(\phi ) \), then the first variation is \(\langle F(\phi ,\psi ), \delta (\nu )\rangle _{L^2}=0\). Embedding the equation in a descent differential equation yields:

$$\begin{aligned} \frac{d\psi }{d t} = -\delta (\nu ) \left( l_{+} |\nabla H(\phi )| H(\psi ) + l_{-} |\nabla H(\phi )| H(-\psi ) + l_{0} |\nabla H(\psi )| H(\phi ) \right) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaeffer, H., Vese, L. Variational Dynamics of Free Triple Junctions. J Sci Comput 59, 386–411 (2014). https://doi.org/10.1007/s10915-013-9767-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9767-z

Keywords

Navigation