Journal of Scientific Computing

, Volume 54, Issue 2–3, pp 414–427 | Cite as

Simulations of Supersonic Astrophysical Jets and Their Environments Using Level Set Methods

  • Youngsoo Ha
  • Chang Ho Kim
  • Myungjoo Kang


Computational fluid dynamics simulations using the WENO method and level set method are applied to high Mach number nonrelativistic astrophysical jets, including the effects of radiative cooling. WENO methods introduced in Liu et al. (J. Comput. Phys., 115:200–212, 1994) have allowed us to simulate HH 1-2 astrophysical jets at Mach number much higher than Mach 80 (Ha et al. in J. Sci. Comput. 24:29–44, 2005). Simulations at high Mach numbers and with radiative cooling are essential for achieving detailed agreement with the astrophysical images. Simulations of interaction between astrophysical jet and environment using level set methods are considered in this paper.


Astrophysical jets Radiative cooling WENO scheme Level Set Method 



Youngsoo Ha was supported by the Korea Research Foundation (KRF) grant funded by the Korea government (MEST) (2009-0074766). Changho Kim was supported by Konkuk University. Myungjoo Kang was supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program.


  1. 1.
    Fedkiw, R.P., Merriman, B., Osher, S.: Simplified discretization of systems of hyperbolic conservation laws containing advection equations. J. Comput. Phys. 157, 302–326 (2000) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ha, Y., Gardner, C.L., Gelb, A., Shu, C.W.: Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Comput. Sci. 24, 29–44 (2005) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ha, Y., Gardner, C.L.: Positive scheme numerical simulation of high Mach number astrophysical jets. J. Sci. Comput. 34, 247–259 (2008) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted-essentially-non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005) MATHCrossRefGoogle Scholar
  5. 5.
    Hester, J.J., Stapelfeldt, K.R., Scowen, J.A.: Hubble space telescope wide field planetary camera 2 observations of HH 1-2. Astrophys. J. 116, 372–395 (1998) Google Scholar
  6. 6.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Masciadri, E., de Gouveia Dal Pino, E.M., Raga, A.C., Noriega-Crespo, A.: The procession of the giant HH 34 outflow: a possible jet deceleration mechanism. Astrophys. J. 580, 950–958 (2002) CrossRefGoogle Scholar
  9. 9.
    Schmutzler, T., Tscharnuter, W.M.: Effective radiative cooling in optically thin plasmas. Astron. Astrophys. 273, 318–330 (1993) Google Scholar
  10. 10.
    Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988) MATHCrossRefGoogle Scholar
  11. 11.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Shu, C.W.: ENO and WENO schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.W., Tadmor, E. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998) (also NASA CR-97-206253 and ICASE-97-65 Rep., NASA Langley Research Center, Hampton [VA, USA]) CrossRefGoogle Scholar
  13. 13.
    Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.National Institute for Mathematical SciencesDaejeonSouth Korea
  2. 2.Department of Computer Engineering, Glocal CampusKonkuk UniversityChungjuSouth Korea
  3. 3.Department of Mathematical SciencesSeoul National UniversitySeoulSouth Korea

Personalised recommendations