Skip to main content

Advertisement

Log in

The inner ear of Protungulatum (Pan-Euungulata, Mammalia)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

We present new anatomical details about the bony labyrinth of Protungulatum based on micro CT-scan investigation of an isolated petrosal bone retrieved at the Puercan locality of Bug Creek Anthills and referred to Protungulatum sp. The exceptional state of preservation of the specimen allowed us to reconstruct the very fine details of the inside of the petrosal bone, including the bony labyrinth, the innervation of the vestibule and the innervation and vasculature of the cochlea. Estimation of the auditory capability of Protungulatum based on cochlear morphology indicate that Protungulatum was specialized for high-frequency hearing, with estimated low frequency limits above 1 KHz. Comparisons with Late Cretaceous non-placental eutherians and with early Tertiary pan-euungulates indicate that the bony labyrinth of Protungulatum is closer in general morphology to Mesozoic forms (low coiling and low aspect ratio of the cochlea, posterior orientation of the common crus, dorsal outpocketing of the cochlear fossula), and shares only a few characters with pan-euungulate and euungulate taxa. Interestingly, the bony labyrinth of Protungulatum also shares some morphological features with South American notoungulates and litopterns recently described from Itaboraí, Brazil. These new observations provide new morphological features of potential phylogenetic interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asher RJ, Bennett N, Lehmann T (2009) The new framework for understanding placental mammal evolution. Bioessays 31(8):853–864. doi:10.1002/bies.200900053

    Article  CAS  PubMed  Google Scholar 

  • Axelsson A, Ryan AF (1988) Circulation of the inner ear: I. Comparative study of the vascular anatomy in the mammalian cochlea. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the Ear. Taylor & Francis, US, pp 295–316

  • Barone R, Bortolami R (2004) Moelle épiniere. Neurologie I—systeme nerveux central, Tome 6. Vigot Frères, Paris

    Google Scholar 

  • Bast TH, Anson BJ (1952) The development of the cochear fenestra, fossula and secondary tympanic membrane. Q Bull Northwest Univ Med Sch 26(4):344–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit J, Orliac MJ, Tabuce R (2013) The petrosal of the earliest elephant-shrew Chambius (Macroscelidea: Afrotheria) from the Eocene of Djebel Chambi (Tunisia) and the evolution of middle and inner ear of elephant-shrews. J Syst Palaeontol 11(8):907–923. doi:10.1080/14772019.2012.713400

    Article  Google Scholar 

  • Billet G, Muizon C de (2013) External and internal anatomy of a petrosal from the late Paleocene of Itaboraí, Brazil, referred to Notoungulata (Placentalia). J Vertebr Paleontol 33(2):455–469. doi:10.1080/02724634.2013.722153

  • Billet G, Hautier L, Asher RJ, Schwarz C, Crumpton N, Martin T, Ruf I (2012) High morphological variation of vestibular system accompanies slow and infrequent locomotion in three-toed sloths. Proc Roy Soc Lond B 279:3932–3939. doi:10.1098/rspb.2012.1212

    Article  Google Scholar 

  • Billet G, Muizon C de, Schellhorn R, Ruf I, Ladevèze S, Bergqvist L (2015) Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia). Zool J Linn Soc 173(4):956–987. doi:10.1111/zoj.12219

  • Buckley M (2015) Ancient collagen reveals evolutionary history of the endemic South American ‘ungulates.’ Proc Roy Soc Lond B 282(1806):20142671. doi:10.1098/rspb.2014.2671

    Article  Google Scholar 

  • Cifelli RL (1982) The petrosal structure of Hyopsodus with respect to that of some other ungulates, and its phylogenetic implications. J Paleontol 56(3):795–805

    Google Scholar 

  • Danilo L (2012) Evolution des structures neurocrâniennes des Equoidea (Perissodactyla, Mammalia) européens paléogènes. Université de Montpellier, Unpublished Thesis

  • Danilo L, Remy J, Vianey-Liaud M, Mérigeaud S, Lihoreau F (2015). Intraspecific variation of endocranial structures in extant Equus: a prelude to endocranial studies in fossil equoids. J Mammal Evol 22(4):561–582

    Article  Google Scholar 

  • Echteler SM, Fay RR, Popper AN (1994) Structure of the mammalian cochlea. In: Fay RR, Popper AN (eds) Comparative Hearing: Mammals. Springer-Verlag, New York, pp 134–171

    Chapter  Google Scholar 

  • Ekdale EG (2009) Variation within the bony labyrinth of mammals. Dissertation, The University of Texas

  • Ekdale EG (2010) Ontogenetic variation in the bony labyrinth of Monodelphis domestica (Mammalia: Marsupialia) following ossification of the inner ear cavities. Anat Rec 293:1896–1912

    Article  Google Scholar 

  • Ekdale EG (2013) Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PloS ONE 8(6):1–100. doi:10.1371/journal.pone.0066624

    Article  Google Scholar 

  • Ekdale EG, Racicot RA (2015) Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti. J Anat 226(1):22–39

    Article  PubMed  Google Scholar 

  • Ekdale EG, Rowe T (2011) Morphology and variation within the bony labyrinth of zhelestids (Mammalia, Eutheria) and other therian mammals. J Vertebr Paleontol 31(3):658–675. doi:10.1080/02724634.2011.557284

    Article  Google Scholar 

  • Ekdale EG, Archibald JD, Averianov AO (2004). Petrosal bones of placental mammals from the Late Cretaceous of Uzbekistan. Acta Palaeontol Polonica 49(1):161–176

  • Feneis H (1993) Anatomisches Bildwörterbuch der lnternationales Nomenklatur, 7th edn. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Fleischer G (1973) Studien am Skelett des Gehörorgans der Saügetiere, einschließlich des Menschen. Saügetierk Mitt 21:131–239

    Google Scholar 

  • Fleischer G (1976) Hearing in extinct cetaceans as determined by cochlear structure. J Paleontol: 133–152

  • Frick H, Leonhardt H, Starck D (1992) Spezielle Anatomie (Vol. 2). Georg Thieme Verlag, Stuttgart

  • Geisler JH, Luo Z (1996). The petrosal and inner ear of Herpetocetus sp. (Mammalia: Cetacea) and their implications for the phylogeny and hearing of archaic mysticetes. J Paleontol 70(6):1045–1066.

    Article  Google Scholar 

  • Giannini NP, Wible JR, Simmons NB (2006) On the cranial osteology of Chiroptera. I. Pteropus (Megachiroptera, Pteropodidae). Bull Am Mus Nat Hist 295:1–134

  • Gray AA (1908) The Labyrinth of Animals: including Mammals, Birds, Reptiles and Amphibians (Vol. 2). J and A Churchill, London

  • Gray H (1918) Henry Gray’s Anatomy of the Human Body. Lea and Febiger, Philadelphia

    Google Scholar 

  • Heffner RS, Heffner HE (1992). Evolution of sound localization in mammals. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. Springer, New York, pp 691–715

    Chapter  Google Scholar 

  • Heffner RS, Heffner HE (2008) High-frequency hearing. In: Dallos P, Oertel D, Hoy R (eds) Handbook of the Senses: Audition. Elsevier, New York, pp. 55–60

  • Ketten DR (1992) The cetacean ear: form, frequency, and evolution. In: Thomas J, Kastelein RA, Supin AY (eds) Marine Mammal Sensory Systems. Plenum Press, New York, pp 53–75

    Chapter  Google Scholar 

  • Ketten DR, Odell DK, Domning DP (1992) Structure, function, and adaptation of the manatee ear. In: Kastelein RA, Supin AYa, Thomas JA (eds) Marine Mammal Sensory Systems. Plenum Press, New York, pp 77–95

  • Lebrun R (2014) ISE-MeshTools, a 3D interactive fossil reconstruction freeware. 12th Annual Meeting of EAVP, Torino, Italy

  • Lebrun R, De León MP, Tafforeau P, Zollikofer C (2010). Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J Anat 216(3):368–380

    Article  PubMed  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The Vertebrate Inner Ear. CRC Press Llc, Boca Raton

    Google Scholar 

  • MacIntyre GT (1972) The trisulcate petrosal pattern of mammals. In: Dobzhansky T, Hecht M, Steere WC (eds) Evolutionary Biology, Vol. 6. Appleton-Century-Crofts, New York, pp 275–303

    Chapter  Google Scholar 

  • MacPhee RD (1981) Auditory regions of primates and eutherian insectivores: morphology, ontogeny, and character analysis. Contrib Primatol 18:1–282

  • MacPhee RDE (1994) Morphology, adaptations, and relationships of Plesiorycteropus, and a diagnosis of a new order of eutherian mammals. Bull Am Mus Nat Hist 220:1–214

  • Macrini TE, Flynn JJ, Croft DA, Wyss AR (2010) Inner ear of a notoungulate placental mammal: anatomical description and examination of potentially phylogenetically informative characters. J Anat 216(5):600–610

    Article  PubMed  PubMed Central  Google Scholar 

  • Macrini TE, Flynn JJ, Ni X, Croft DA, Wyss AR (2013). Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters. J Anat 223(5):442–461

    PubMed  PubMed Central  Google Scholar 

  • Manley GA (1971) Some aspects of the evolution of hearing in vertebrates. Nature 230:506–509. doi:10.1038/230506a0

    Article  CAS  PubMed  Google Scholar 

  • Manley GA (1972) A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution 26(4):608–621. doi:10.2307/2407057

    Article  Google Scholar 

  • Manoussaki D, Chadwick RS, Ketten DR, Arruda J, Dimitriadis EK, O’Malley JT (2008) The influence of cochlear shape on low-frequency hearing. Proc Natl Acad Sci USA 105:6162–6166

  • McDowell SB Jr (1958) The Greater Antillean insectivores. Bull Am Mus Nat Hist 115:117–214

  • Meng J, Fox RC (1995) Osseous inner ear structures and hearing in early marsupials and placentals. Zool J Linn Soc 115(1):47–71. doi:10.1006/zjls.1995.0033

    Article  Google Scholar 

  • Muizon C de, Billet G, Argot C, Ladevèze S, Goussard F (2015) Alcidedorbignya inopinata, a basal pantodont (Placentalia, Mammalia) from the early Palaeocene of Bolivia: anatomy, phylogeny and palaeobiology. Geodiversitas 37(4):397–634

  • Novacek MJ (1986) The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull Am Mus Nat Hist 183:1–112

    Google Scholar 

  • O’Leary MA (2010). An anatomical and phylogenetic study of the osteology of the petrosal of extant and extinct artiodactylans (Mammalia) and relatives. Bull Am Mus Nat Hist 335:1–206. doi:10.1206/335.1

    Article  Google Scholar 

  • O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo ZX, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier RW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello A (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 6120(339):662–667. doi:10.1126/science.1229237

    Article  Google Scholar 

  • Orliac MJ (2013) The petrosal bone of extinct Suoidea (Mammalia, Artiodactyla). J Syst Paleontol 11(8):925–945. doi:10.1080/14772019.2012.704409

    Article  Google Scholar 

  • Orliac MJ, Benoit J, O’Leary MA (2012) The inner ear of Diacodexis, the oldest artiodactyl mammal. J Anat 221:417–426. doi:10.1111/j.1469-7580.2012.01562.x

  • Orliac MJ, O’Leary M (2011) Endocranial structures of Diacodexis (Mammalia, Artiodatyla). J Vertebr Paleontol 31(suppl. to no 3):169

  • Orliac MJ, O’Leary MA (2014) Comparative anatomy of the petrosal bone of dichobunoids, early members of Artiodactylamorpha (Mammalia). J Mammal Evol 21(3):299–320

    Article  Google Scholar 

  • Ravel A, Orliac MJ (2015) The inner ear morphology of the ‘condylarthran’ Hyopsodus lepidus. Hist Biol 27(8):957–963. doi:10.1080/08912963.2014.915823

  • Ravizza RJ, Heffner HE, Masterton B (1969a) Hearing in primitive mammals, I: Opossum (Didelphis virginianus). J Aud Res 9:1–7

    Google Scholar 

  • Ravizza RJ, Heffner HE, Masterton B (1969b) Hearing in primitive mammals: II. Hedgehog (Hemiechinus auritus). J Aud Res 9:8–11

    Google Scholar 

  • Rosowski JJ (1992) Hearing in transitional mammals: predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. Springer, New York, pp 615–631

    Chapter  Google Scholar 

  • Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linn Soc 101(2):131–168. doi:10.1111/j.1096-3642.1991.tb00890.x

    Article  Google Scholar 

  • Rougier GW, Wible JR (2006) Major changes in the ear region and basicranium of early mammals. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR (eds) Amniote Paleobiology: Phylogenetic and Functional Perspectives on the Evolution of Mammals, Birds, and Reptiles. The University of Chicago Press, Chicago, pp 269–311

    Google Scholar 

  • Schaller O, Constantinescu GM, Habel RE, Sack WO, Simoens P, De Vos NR (1992) Illustrated Veterinary Anatomical Nomenclature. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Sloan RE, Van Valen L (1965) Cretaceous mammals from Montana. Science 148(3667):220–227. doi:10.1126/science.148.3667.220

    Article  CAS  PubMed  Google Scholar 

  • Smit J, Van der Kaars S (1984) Terminal Cretaceous extinctions in the Hell Creek area, Montana: compatible with catastrophic extinction. Science 223(4641):1177–1179

    Article  CAS  PubMed  Google Scholar 

  • Spoor F, Garland T, Krovitz G, Ryan TM, Silcox MT, Walker A (2007) The primate semicircular canal system and locomotion. Proc Natl Acad Sci USA 104:10808–10812. doi:10.1073/pnas.0704250104

  • Spoor F, Zonneveld F (1998) Comparative review of the human bony labyrinth. Yearb Phys Anthropol 41:211–251

    Article  Google Scholar 

  • Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S, Cappellini E, Turvey TS, Reguero M, Gelfo JN, Kramarz A, Burger J, Thomas-Oates J, Ashford DA, Ashton PD, Rowsell K, Porter DM, Kessler B, Fischer R, Baessmann C, Kaspar S, Olsen JV, Kiley P, Elliott JA, Kelstrup CD, Mullin V, Hofreiter M, Willerslev E, Hublin J-J, Orlando L, Barnes I, MacPhee RDE (2015) Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522:81–84. doi:10.1038/nature14249

    Article  CAS  PubMed  Google Scholar 

  • West CD (1985) The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77:1091–1101. doi:10.1121/1.392227

    Article  CAS  PubMed  Google Scholar 

  • Wible JR (1990) Petrosals of Late Cretaceous marsupials from North America, and a cladistic analysis of the petrosal in therian mammals. J Vertebr Paleontol 10:183–205

  • Wible JR (2003) On the cranial osteology of the short-tailed opossum Monodelphis brevicaudata (Didelphidae, Marsupialia). Ann Carnegie Mus 72(3):137–202

    Google Scholar 

  • Wible JR (2010) Petrosal anatomy of the nine-banded armadillo, Dasypus novemcinctus Linneaus, 1758 (Mammalia, Xenarthra, Dasypodidae). Ann Carnegie Mus 79(1):1–28. doi:10.2992/007.079.0101

    Article  Google Scholar 

  • Wible JR, Rougier GW, Novacek MJ, Asher RJ (2009) The Eutherian mammal Maelestes gobiensis from the Later Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull Am Mus Nat Hist 327:1–123. doi:10.1206/623.1

  • Wible JR, Rougier GW, Novacek MJ, McKenna MC (2001) Earliest eutherian ear region: a petrosal referred to Prokennalestes from the Early Cretaceous of Mongolia. Am Mus Novitates 3322:1–44

    Article  Google Scholar 

  • Wible JR, Rougier GW, Novacek MJ, McKenna MC, Dashzeveg D (1995) A mammalian petrosal from the Early Cretaceous of Mongolia: implications for the evolution of the ear and mammaliamorph interrelationships. Am Mus Novitates 3149:1–19

  • Wible JR, Wang Y, Li C, Dawson M (2007) Cranial anatomy and relationships of a new ctenodactyloid (Mammalia, Rodentia) from the early Eocene of Hubei Province, China. Ann Carnegie Mus 74(2):91–150

    Article  Google Scholar 

  • Wilson GP (2013) Mammals across the K/Pg boundary in northeastern Montana, USA: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling. Paleobiology 39(3):429–469. doi:10.1666/12041

    Article  Google Scholar 

  • Zack S, Penkrot TA, Bloch JI, Rose KD (2005) Affinities of ‘hyopsodontids’ to elephant shrews and a Holarctic origin of Afrotheria. Nature 434:497–501. doi:10.1038/nature03351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

For access to the micro CT-scanner we thank S. Judex and S. Xu of the Department of Biomedical Engineering, Stony Brook University, New York. We are also grateful to G. Billet for providing us with supplemental images of the bony labyrinth of the litoptern from Itaboraí and for his thorough review of the manuscript. This is ISE-M publication n° ISEM 2016-017. This research was supported by grants NSF-DEB 0629836, 9903964, NSF BDI-0743309, NSF-EAR 0622359 to M. A. O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Orliac.

Electronic supplementary material

ESM 1

(PDF 859 kb)

Appendix

Appendix

Table 2 Alphabetical list of anatomical terms used. Source is Giannini et al. (2006) unless otherwise specified; synonyms are noted in some cases. Terminology generally follows the Nomina Anatomica Veterinaria (NAV) as applied by Giannini et al. (2006) and Wible (2003), who listed standardized cranial anatomical terms in English for many Latin Nomina Anatomica Veterinaria terms and synonymized many terms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orliac, M.J., O’Leary, M.A. The inner ear of Protungulatum (Pan-Euungulata, Mammalia). J Mammal Evol 23, 337–352 (2016). https://doi.org/10.1007/s10914-016-9327-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-016-9327-z

Keywords

Navigation