Skip to main content
Log in

Hierarchical enumeration of octahedral complexes by using combined-permutation representations

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Hierarchical enumerations of octahedral derivatives are conducted in accord with the hierarchy of groups for characterizing an octahedral skeleton, i.e., point groups (\({\varvec{O}}\) and \({\varvec{O}}_{h}\); orders 24 and 48) \(\subset \) RS-stereoisomeric group (\({\varvec{O}}_{h\widetilde{\sigma }\widehat{I}}\); order 96) \(\subset \) stereoisomeric group (\(\widetilde{{\varvec{O}}}_{h\widetilde{\sigma }\widehat{I}} \,(= {\varvec{S}}^{[6]}_{\sigma \widehat{I}})\); order 1440) \(=\) isoskeletal group (\(\widetilde{\widetilde{{\varvec{O}}}}_{h\widetilde{\sigma }\widehat{I}} \,(= {\varvec{S}}^{[6]}_{\sigma \widehat{I}})\); order 1440). The corresponding cycle indices with chirality fittingness (CI-CFs) are calculated by using combined-permutation representations (Fujita in MATCH Commun Math Comput Chem 76:379–400, 2016). Then, a set of three ligand-inventory functions for 3D enumeration is introduced into the CI-CFs for the enumerations under the point groups and the RS-stereoisomeric group, while a single ligand-inventory function for 2D (graph) enumeration is introduced into the CI-CFs for the enumerations under the stereoisomeric group and the isoskeletal group. The expansion of the resulting equations gives generating functions, in which the coefficients of respective terms show the numbers of octahedral derivatives. They are discussed by drawing isomer-classification diagrams after they are categorized into octahedral derivatives with achiral proligands, those with achiral and chiral proligands, and those with chiral proligands. Type-I and type-V stereoisograms are drawn to demonstrate the conceptual distinction between RS-stereogenicity and stereogenicity, where the combination of configuration indices and C/A-descriptors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The symbols \([\theta ]_{15}^{*}\), \([\theta ]_{19}^{*}\), \([\theta ]_{27}^{*}\), \([\theta ]_{30}^{*}\), \([\theta ]_{40}^{*}\), and \([\theta ]_{45}^{*}\) in Table 2 should be corrected to be \([\theta ]_{15}\), \([\theta ]_{19}\), \([\theta ]_{27}\), \([\theta ]_{30}\), \([\theta ]_{40}\), and \([\theta ]_{45}\).

References

  1. A. Werner, Beitrag zur Konstitution anorganischer Verbindungen. Z. Anorg. Chem. 3, 267–330 (1893)

    Article  Google Scholar 

  2. E.C. Constable, C.E. Housecroft, Coordination chemistry: the scientific legacy of Alfred Werner. Chem. Soc. Rev. 42, 1429–1439 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. E.C. Constable, Stereogenic metal centers—from Werner to supramolecular chemistry. Chem. Soc. Rev. 42, 1637–1651 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. N.P.E. Barry, P.J. Sadler, 100 years of metal coordination chemistry: from Alfred Werner to anticancer metallodrugs. Pure Appl. Chem. 86, 1897–1910 (2014)

    Article  CAS  Google Scholar 

  5. A. von Zelewsky, Stereochemistry of coordination compounds. From Alfred Werner to the 21st century. Chimia 68, 297–298 (2014)

    Article  CAS  Google Scholar 

  6. A. Werner, Über die raumisomeren Kobaltverbindungen. Justus Liebigs Ann. Chem. 386, 1–272 (1912)

    Article  CAS  Google Scholar 

  7. A. Werner, Zur Kenntniss des asymmetrischen Kobaltatoms. I. Ber. Dtsch. Chem. Ges. 44, 1887–1898 (1911)

    Article  CAS  Google Scholar 

  8. G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math. 68, 145–254 (1937)

    Article  Google Scholar 

  9. G. Pólya, R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (Springer, New York, 1987)

    Book  Google Scholar 

  10. B.A. Kennedy, D.A. McQuarrie, C.H.B. Jr, Group theory and isomerism. Inorg. Chem. 3, 265–268 (1964)

    Article  CAS  Google Scholar 

  11. R.F. Timble, Isomers of octahedral complexes with nonbranching ligands. J. Chem. Educ. 31, 176–179 (1954)

    Article  Google Scholar 

  12. M. Brorson, T. Damhus, C.E. Schäffer, Exhaustive examination of chiral configurations of edges on a regular octahedron: analysis of the possibilities of assigning chirality descriptors within a generalized \(\delta /\lambda \) system. Inorg. Chem. 22, 1569–1573 (1983)

    Article  CAS  Google Scholar 

  13. S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry (Springer, Berlin, 1991)

    Book  Google Scholar 

  14. S. Fujita, Promolecules with a subsymmetry of \( {O}_{h}\). Combinatorial enumeration and stereochemical properties. Polyhedron 12, 95–110 (1993)

    Article  CAS  Google Scholar 

  15. S. Fujita, N. Matsubara, Edge configurations on a regular octahedron. Their exhaustive enumeration and examination with respect to edge numbers and point-group symmetries. Internet Electron. J. Mol. Des. 2, 224–241 (2003)

    CAS  Google Scholar 

  16. S. Fujita, Mathematical Stereochemistry (De Gruyter, Berlin, 2015)

    Book  Google Scholar 

  17. S. Fujita, Stereoisograms of octahedral complexes. I. Chirality and RS-stereogenicity. MATCH Commun. Math. Comput. Chem. 71, 511–536 (2014)

    Google Scholar 

  18. S. Fujita, Stereoisograms of octahedral complexes. II. RS-Stereogenicity versus stereogenicity as well as RS-stereoisomerism versus stereoisomerism. MATCH Commun. Math. Comput. Chem. 71, 537–574 (2014)

    Google Scholar 

  19. S. Fujita, Stereoisograms of octahedral complexes. III. Prochirality, pro-RS-stereogenicity, and pro-ortho-stereogenicity free from the conventional prochirality and prostereogenicity. MATCH Commun. Math. Comput. Chem. 71, 575–608 (2014)

    Google Scholar 

  20. S. Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and Chemical Compounds (University of Kragujevac, Faculty of Science, Kragujevac, 2013)

    Google Scholar 

  21. S. Fujita, Type-itemized enumeration of RS-stereoisomers of octahedral complexes. Iran. J. Math. Chem 7, 113–153 (2016)

    Google Scholar 

  22. S. Fujita, Diagrammatical Approach to Molecular Symmetry and Enumeration of Stereoisomers (University of Kragujevac, Faculty of Science, Kragujevac, 2007)

    Google Scholar 

  23. S. Fujita, Computer-oriented representations of point groups and cycle indices with chirality fittingness (CI-CFs) calculated by the GAP system. Enumeration of three-dimensional structures of ligancy 4 by Fujita’s proligand method. MATCH Commun. Math. Comput. Chem. 76, 379–400 (2016)

    Google Scholar 

  24. S. Fujita, Computer-oriented representations of \( {O}_{h}\)-skeletons for supporting combinatorial enumeration by Fujita’s proligand method. GAP calculation of cycle indices with chirality fittingness (CI-CFs). MATCH Commun. Math. Comput. Chem. 77, 409–442 (2017)

    Google Scholar 

  25. S. Fujita, Graphs to chemical structures 1. Sphericity indices of cycles for stereochemical extension of Pólya’s theorem. Theor. Chem. Acc. 113, 73–79 (2005)

    Article  CAS  Google Scholar 

  26. S. Fujita, Graphs to chemical structures 2. Extended sphericity indices of cycles for stereochemical extension of Pólya’s coronas. Theor. Chem. Acc. 113, 80–86 (2005)

    Article  CAS  Google Scholar 

  27. S. Fujita, Graphs to chemical structures 3. General theorems with the use of different sets of sphericity indices for combinatorial enumeration of nonrigid stereoisomers. Theor. Chem. Acc. 115, 37–53 (2006)

    Article  CAS  Google Scholar 

  28. S. Fujita, Promolecules for characterizing stereochemical relationships in non-rigid molecules. Tetrahedron 47, 31–46 (1991)

    Article  CAS  Google Scholar 

  29. S. Fujita, Importance of the proligand-promolecule model in stereochemistry. I. The unit-subduced-cycle-index (USCI) approach to geometric features of prismane derivatives. J. Math. Chem. 50, 2202–2222 (2012)

    Article  CAS  Google Scholar 

  30. S. Fujita, Importance of the proligand-promolecule model in stereochemistry. II. The stereoisogram approach to stereoisomeric features of prismane derivatives. J. Math. Chem. 50, 2168–2201 (2012)

    Article  CAS  Google Scholar 

  31. S. Fujita, Misleading classification of isomers and stereoisomers in organic chemistry. Bull. Chem. Soc. Jpn. 87, 1367–1378 (2014)

    Article  CAS  Google Scholar 

  32. S. Fujita, Classification of stereoisomers. Flowcharts without and with the intermediate concept of RS-stereoisomers for mediating between enantiomers and stereoisomers. Tetrahedron: Asymmetry 27, 43–62 (2016)

    Article  CAS  Google Scholar 

  33. S. Fujita, Chirality and RS-stereogenicity as two kinds of handedness. Their Aufheben by Fujita’s stereoisogram approach for giving new insights into classification of isomers. Bull. Chem. Soc. Jpn. 89, 987–1017 (2016)

    Article  CAS  Google Scholar 

  34. S. Fujita, Stereogenicity revisited. Proposal of holantimers for comprehending the relationship between stereogenicity and chirality. J. Org. Chem. 69, 3158–3165 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. S. Fujita, Pseudoasymmetry, stereogenicity, and the RS-nomenclature comprehended by the concepts of holantimers and stereoisograms. Tetrahedron 60, 11629–11638 (2004)

    Article  CAS  Google Scholar 

  36. S. Fujita, Three aspects of an absolute configuration on the basis of the stereoisogram approach and revised terminology on related stereochemical concepts. J. Math. Chem. 52, 1514–1534 (2014)

    Article  CAS  Google Scholar 

  37. K. Mislow, J. Siegel, Stereoisomerism and local chirality. J. Am. Chem. Soc. 106, 3319–3328 (1984)

    Article  CAS  Google Scholar 

  38. A. von Zelewsky, Stereochemistry of Coordination Compounds (Wiley, Chichester, 1996)

    Google Scholar 

  39. R.S. Cahn, C.K. Ingold, V. Prelog, Specification of molecular chirality. Angew. Chem. Int. Ed. Eng. 5, 385–415 (1966)

    Article  CAS  Google Scholar 

  40. V. Prelog, G. Helmchen, Basic principles of the CIP-system and proposal for a revision. Angew. Chem. Int. Ed. Eng. 21, 567–583 (1982)

    Article  Google Scholar 

  41. S. Fujita, Stereoisograms for reorganizing the theoretical foundations of stereochemistry and stereoisomerism: II. Rational avoidance of misleading standpoints for R/S-stereodescriptors of the Cahn-Ingold-Prelog system. Tetrahedron: Asymmetry 25, 1169–1189 (2014)

    Article  CAS  Google Scholar 

  42. S. Fujita, The stereoisogram approach for remedying discontents of stereochemical terminology. Tetrahedron: Asymmetry 25, 1612–1623 (2014)

    Article  CAS  Google Scholar 

  43. N.G. Connelly, T. Damhus, R.M. Hartshorn, A.T. Hutton, Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005 (The Royal Society of Chemistry, Cambridge, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsaku Fujita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, S. Hierarchical enumeration of octahedral complexes by using combined-permutation representations. J Math Chem 56, 2845–2875 (2018). https://doi.org/10.1007/s10910-018-0921-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0921-6

Keywords

Navigation