Advertisement

Journal of Mathematical Chemistry

, Volume 54, Issue 2, pp 503–526 | Cite as

Entropy of chemical processes versus numerical representability of orderings

  • M. J. Campión
  • G. Arzamendi
  • L. M. Gandía
  • E. Induráin
Original Paper

Abstract

Leaning on the mathematical concept of an interval order, we show that intransitivities that appear in several chemical processes, mainly related to mixing and competition, can actually be located and handled within a thermodynamical setting whose basis is the classical axiomatics due to Carathéodory, now using two intertwined entropy functions. Interdisciplinary comparisons to other similar theories (e.g., Utility Theory) are also made, pointing out the common mathematical background based on the numerical representability of total preorders and interval orders.

Keywords

Entropy Carathéodory axioms Numerical representability of orderings Intransitive processes Interval orders Semigroups 

Mathematics Subject Classification

80A05 (Primary) 80A10 06A06 06F30 26A48 54F05 91B16 92E20 

Notes

Acknowledgments

Thanks are given to the editor and three anonymous referees for their valuable suggestions and comments on a previous version of the manuscript.

References

  1. 1.
    J.C. Candeal, J.R. De Miguel, E. Induráin, G.B. Mehta, Utility and entropy. Econ. Theory 17, 233–238 (2001)CrossRefGoogle Scholar
  2. 2.
    J.C. Candeal, J.R. De Miguel, E. Induráin, G.B. Mehta, On a theorem of Cooper. J. Math. Anal. Appl. 258, 701–710 (2001)CrossRefGoogle Scholar
  3. 3.
    J.C. Candeal, J.R. De Miguel, E. Induráin, G.B. Mehta, Representations of ordered semigroups and the physical concept of entropy. Appl. Gen. Topol. 5(1), 11–23 (2004)CrossRefGoogle Scholar
  4. 4.
    T. Sousa, T. Domingos, Is neoclassical microeconomcs formally valid? An approach based on an analogy with equilibrium thermodynamics. Ecol. Econ. 58(1), 160–169 (2006)CrossRefGoogle Scholar
  5. 5.
    T. Sousa, T. Domingos, Equilibrium econophysics: a unified formalism for neoclassical economics and equilibrium thermodynamics. Phys. A 371(2), 492–612 (2006)CrossRefGoogle Scholar
  6. 6.
    J. Bryant, A thermodynamic theory of economics. Int. J. Exergy 4(3), 302–337 (2007)CrossRefGoogle Scholar
  7. 7.
    E. Smith, D.K. Foley, Classical thermodynamics and economic general equilibrium. J. Econ. Dyn. Control 32(1), 7–65 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Shubik, E. Smith, Building theories of economic process. Complexity 14(3), 77–92 (2009)CrossRefGoogle Scholar
  9. 9.
    A. Dionisio, A.H. Reis, L. Coelho, Utility function estimation: the entropy approach. Phys. A 387(15), 3862–3867 (2008)CrossRefGoogle Scholar
  10. 10.
    V.N. Pokrovskii, Econodynamics: The Theory of Social Production, New Economic Windows 12 (Springer, Berlin, 2012)CrossRefGoogle Scholar
  11. 11.
    F.S. Roberts, R.D. Luce, Axiomatic thermodynamics and extensive measurement. Synthese 18, 311–326 (1968)CrossRefGoogle Scholar
  12. 12.
    P.J. Davis, Entropy and society: can the physical/mathematical notions of entropy be usefully imported into the social sphere? J. Humanist. Math. 1(1), 119–136 (2011)CrossRefGoogle Scholar
  13. 13.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)CrossRefGoogle Scholar
  14. 14.
    A. Meucci, Fully flexible views: theory and practice. Risk 21(10), 97–102 (2008)Google Scholar
  15. 15.
    R. Zhou, R. Cai, G. Tong, Applications of entropy in finance: a review. Entropy 15, 4909–4931 (2013)CrossRefGoogle Scholar
  16. 16.
    B. Kosko, Fuzzy entropy and conditioning. Inf. Sci. 40, 165–174 (1986)CrossRefGoogle Scholar
  17. 17.
    G. Bosi, M.J. Campión, J.C. Candeal, E. Induráin, Interval-valued representability of qualitative data: the continuous case. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 15(3), 299–319 (2007)CrossRefGoogle Scholar
  18. 18.
    C. Carathéodory, Untersuchung über die Grundlagen der Thermodynamik. Math. Ann. 67, 355–386 (1909)CrossRefGoogle Scholar
  19. 19.
    J.L.B. Cooper, The foundations of thermodynamics. J. Math. Anal. Appl. 17, 172–193 (1967)CrossRefGoogle Scholar
  20. 20.
    O. Redlich, Fundamental thermodynamics since Carathéodory. Rev. Mod. Phys. 49(1), 556–563 (1968)CrossRefGoogle Scholar
  21. 21.
    E.C. Zachmanoglou, Carathéodory theorem on the second law of thermodynamics. SIAM J. Appl. Math. 25(4), 592–596 (1973)CrossRefGoogle Scholar
  22. 22.
    P.T. Landsberg, Main ideas in the axiomatics of thermodynamics. Pure Appl. Chem. 22(3–4), 215–228 (1970)Google Scholar
  23. 23.
    E.H. Lieb, J. Yngvason, A guide to entropy and the second law of thermodinamics. Not. Am. Math. Soc. 45(5), 571–581 (1998)Google Scholar
  24. 24.
    P.T. Landsberg, Entropies galore!. Braz. J. Phys. 29(1), 46–49 (1999)CrossRefGoogle Scholar
  25. 25.
    L. Pogliani, M.N. Berberan-Santos, Constantin Carathéodory and the axiomatic thermodynamics. J. Math. Chem. 28(1–3), 313–324 (2000)CrossRefGoogle Scholar
  26. 26.
    J. Duda, J. Milewska-Duda, A theoretical model for evaluation of configurational entropy of mixing with respect to shape and size of particles. J. Math. Chem. 17(1), 69–109 (1995)CrossRefGoogle Scholar
  27. 27.
    A.Y. Klimenko, Mixing, entropy and competition. Phys. Scr. 85(6), 068201 (2012)CrossRefGoogle Scholar
  28. 28.
    A.Y. Klimenko, Complex competitive systems and competitive thermodynamics. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 271(1982), 20120244 (2013)Google Scholar
  29. 29.
    A.Y. Klimenko, Complexity and intransitivity in technological development. J. Syst. Sci. Syst. Eng. 23(2), 128–152 (2014)CrossRefGoogle Scholar
  30. 30.
    R.F. Nalewajski, Entropy/information bond indices of molecular fragments. J. Math. Chem. 38(1), 43–66 (2005)CrossRefGoogle Scholar
  31. 31.
    R.F. Nalewajski, Communication-theory perspective on valence-bond theory. J. Math. Chem. 45(3), 709–724 (2009)CrossRefGoogle Scholar
  32. 32.
    R.F. Nalewajski, Entropy/information coupling between orbital-communications in molecular subsystems. J. Math. Chem. 47(2), 808–832 (2010)CrossRefGoogle Scholar
  33. 33.
    L. Tarko, A new manner to use application of Shannon entropy in similarity computation. J. Math. Chem. 49(10), 2330–2344 (2011)CrossRefGoogle Scholar
  34. 34.
    A.Y. Klimenko, Entropy and equilibria in competitive systems. Entropy 16, 1–22 (2014)CrossRefGoogle Scholar
  35. 35.
    G. Arzamendi, R. Ferrero, A.R. Pierna, L.M. Gandía, Kinetics of methyl ethyl ketone combustion in air at low concentrations over a commercial Pt/Al\(_2\)O\(_3\) catalyst. Ind. Eng. Chem. Res. 46, 9037–9044 (2007)CrossRefGoogle Scholar
  36. 36.
    I. Reyero, G. Arzamendi, L.M. Gandía, Heterogeneization of the biodiesel synthesis catalysis: CaO and novel calcium compounds as transesterification catalysts. Chem. Eng. Res. Des. 92, 1519–1530 (2014)CrossRefGoogle Scholar
  37. 37.
    G. Bosi, J.C. Candeal, E. Induráin, E. Olóriz, M. Zudaire, Numerical representations of interval orders. Order 18, 171–190 (2001)CrossRefGoogle Scholar
  38. 38.
    G. Birkhoff, Lattice Theory, 3rd edn. (American Mathematical Society, Providence, 1967)Google Scholar
  39. 39.
    D.S. Bridges, G.B. Mehta, Representations of Preference Orderings (Springer, Berlin, 1995)CrossRefGoogle Scholar
  40. 40.
    J. Dugundji, Topology (Allyn and Bacon, Boston, 1966)Google Scholar
  41. 41.
    R.J. Field, Limit cycle oscillations in the reversible oregonator. J. Chem. Phys. 63(6), 2289 (1975)CrossRefGoogle Scholar
  42. 42.
    R.D. Luce, Semiorders and a theory of utility discrimination. Econometrica 24, 178–191 (1956)CrossRefGoogle Scholar
  43. 43.
    P.C. Fishburn, Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7, 144–149 (1970)CrossRefGoogle Scholar
  44. 44.
    P.C. Fishburn, Intransitive indifference in preference theory: a survey. Oper. Res. 18(2), 207–228 (1970)CrossRefGoogle Scholar
  45. 45.
    A.Y. Klimenko, Intransitivity in theory and in the real world. Entropy 17, 4364–4412 (2015)CrossRefGoogle Scholar
  46. 46.
    N. Wiener, Contribution to the theory of relative position. Math. Proc. Camb. Philos. Soc. 17, 441–449 (1914)Google Scholar
  47. 47.
    N. Wiener: A new theory of measurement. Proc. Lond. Math. Soc. 19, 181–205 (1919–1920)Google Scholar
  48. 48.
    D. Scott, P. Suppes, Foundational aspects of theories of measurement. J. Symb. Log. 23, 113–128 (1958)CrossRefGoogle Scholar
  49. 49.
    A. Tversky, Intransitivity of preferences. Psychol. Rev. 76(1), 31–48 (1969)CrossRefGoogle Scholar
  50. 50.
    O. Hölder, Der Axiome der Quantität und die Lehre vom Mass, Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig. Math. Phys. Kl 53, 1–64 (1901)Google Scholar
  51. 51.
    N.G. Alimov, On ordered semigroups. Izv. Akad. Nauk SSSR Ser. Mat. 14, 569–576 (1950). (in Russian) Google Scholar
  52. 52.
    L. Fuchs, Partially Ordered Algebraical Systems (Pergamon Press, Oxford, 1963)Google Scholar
  53. 53.
    J.R. De Miguel, J.C. Candeal, E. Induráin, Archimedeaness and additive utility on totally ordered semigroups. Semigroup Forum 52, 335–347 (1996)CrossRefGoogle Scholar
  54. 54.
    G. Debreu, Representation of a preference ordering by a numerical function, in Decision Processes, ed. by R.M. Thrall, et al. (Wiley, New York, 1954)Google Scholar
  55. 55.
    G. Debreu, Continuous properties of Paretian utility. Int. Econ. Rev. 5, 285–293 (1964)CrossRefGoogle Scholar
  56. 56.
    S. Eilenberg, Ordered topological spaces. Am. J. Math. 63, 39–45 (1941)CrossRefGoogle Scholar
  57. 57.
    J.C. Candeal, J.R. De Miguel, E. Induráin, Extensive measurement: continuous additive utility functions on semigroups. J. Math. Psychol. 40(4), 281–286 (1996)CrossRefGoogle Scholar
  58. 58.
    J.C. Candeal, J.R. De Miguel, E. Induráin, Topological additively representable semigroups. J. Math. Anal. Appl. 210, 385–389 (1997)CrossRefGoogle Scholar
  59. 59.
    P.J. Nyikos, H.C. Reichel, Topologically orderable groups. Gen. Topol. Appl. 45(5), 571–581 (1998)Google Scholar
  60. 60.
    J.C. Candeal, E. Induráin, Semiorders and thresholds of utility discrimination: solving the Scott–Suppes representability problem. J. Math. Psychol. 54, 485–490 (2010)CrossRefGoogle Scholar
  61. 61.
    M.A. Nielsen, Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)CrossRefGoogle Scholar
  62. 62.
    R. Gielerak, M. Sawerwain: Sorting of quantum states with respect to amount of entanglement included, in Computer Networks. 16th Conference, CN 2009, Wisła, Poland, June 16–20, 2009. ed. by A. Kwiecień et al. Proc. Commun. Comput. Inf. Sci. 39, 11–18 (2009)Google Scholar
  63. 63.
    J.C. Candeal-Haro, E. Induráin-Eraso, Utility representations from the concept of measure. Math. Soc. Sci. 26, 51–62 (1993)CrossRefGoogle Scholar
  64. 64.
    B. Subiza, J.E. Peris, A note on numerical representations for weak-continuous acyclic preferences. Rev. Esp. Econ. 15(19), 15–21 (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. J. Campión
    • 1
  • G. Arzamendi
    • 2
  • L. M. Gandía
    • 2
  • E. Induráin
    • 1
  1. 1.Department of Mathematics and Institute for Advanced Materials (InaMat)Public University of NavarrePamplonaSpain
  2. 2.Department of Applied Chemistry and Institute for Advanced Materials (InaMat)Public University of NavarrePamplonaSpain

Personalised recommendations