Journal of Mathematical Chemistry

, Volume 52, Issue 9, pp 2411–2422 | Cite as

An exact analytical solution to the master equation for the vibration–dissociation process of Morse oscillators

  • Mikhail L. Strekalov
Original Paper


The coupled vibration–dissociation process for Morse oscillators and structureless particles has been examined. A method to solve the appropriate master equation is developed. The case has been studied carefully where the dissociation process starts mainly from the bound level nearest to the dissociation limit. The master equation has an exact analytical solution in this case upon many-quantum transitions and for an arbitrary amount of energy transferred per collision. Simple expressions for the steady-state dissociation rate and for the incubation time are obtained.


Vibration–dissociation processes Master equation Transition probability Shock-heated molecules Orthogonalization procedure 


  1. 1.
    E.E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Clarendon Press, Oxford, 1974)Google Scholar
  2. 2.
    J. Troe, J. Chem. Phys. 66, 4745 (1977)CrossRefGoogle Scholar
  3. 3.
    I. Oref, D.C. Tardy, Chem. Rev. 90, 1407 (1990)CrossRefGoogle Scholar
  4. 4.
    M.J. Pilling, S.H. Robertson, Annu. Rev. Phys. Chem. 54, 245 (2003)CrossRefGoogle Scholar
  5. 5.
    A. Fernandez-Ramos, J.A. Miller, S.J. Klippenstein, D.G. Truhlar, Chem. Rev. 106, 4518 (2006)CrossRefGoogle Scholar
  6. 6.
    E.F. de Lima, J.E.M. Hornos, J. Chem. Phys. 125, 164110 (2006)CrossRefGoogle Scholar
  7. 7.
    N.N. Sobolev, V.V. Sokovnikov, Soviet Physics-Uspekhi (Adv. Phys. Sci.) 16, 350 (1973)CrossRefGoogle Scholar
  8. 8.
    J.H. Kiefer, J.C. Hajduk, Chem. Phys. 38, 329 (1979)CrossRefGoogle Scholar
  9. 9.
    D.A. Gonzales, P.L. Varghese, J. Phys. Phys. 97, 7612 (1993)Google Scholar
  10. 10.
    J.I. Steinfeld, P. Ruttenberg, G. Millot, C. Fanjoux, B. Lavorel, J. Phys. Chem. 95, 9638 (1991)CrossRefGoogle Scholar
  11. 11.
    F.B. Gordiets, A.I. Osipov, L.A. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Gordon and Breach, London, 1988)Google Scholar
  12. 12.
    M.L. Strekalov, Chem. Phys. 389, 47 (2011)CrossRefGoogle Scholar
  13. 13.
    M.L. Strekalov, J. Math. Chem. 50, 1021 (2012)CrossRefGoogle Scholar
  14. 14.
    M.L. Strekalov, J. Math. Chem. 51, 2104 (2013)CrossRefGoogle Scholar
  15. 15.
    B. Stevens, Collisional Activation in Gases (Pergamon Press, London, 1967)Google Scholar
  16. 16.
    D.L. Clarke, K.C. Thompson, R.G. Gilbert, Chem. Phys. Lett. 182, 357 (1991)CrossRefGoogle Scholar
  17. 17.
    V. Bernshtein, I. Oref, J. Phys. Chem. 97, 12811 (1993)CrossRefGoogle Scholar
  18. 18.
    L. Yuan, J. Du, A.S. Mullin, J. Chem. Phys. 129, 014303 (2008)CrossRefGoogle Scholar
  19. 19.
    E.W. Montroll, K.E. Shuler, Adv. Chem. Phys. 1, 361 (1958)Google Scholar
  20. 20.
    K.E. Shuler, J. Chem. Phys. 31, 1375 (1959)CrossRefGoogle Scholar
  21. 21.
    D.J. Seery, J. Chem. Phys. 58, 1796 (1973)CrossRefGoogle Scholar
  22. 22.
    A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Nauka, Moscow, 1978). In RussianGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Theoretical Chemistry Laboratory, Institute of Chemical Kinetics and CombustionSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations