Skip to main content
Log in

An exact analytical solution to the master equation for the vibration–dissociation process of Morse oscillators

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The coupled vibration–dissociation process for Morse oscillators and structureless particles has been examined. A method to solve the appropriate master equation is developed. The case has been studied carefully where the dissociation process starts mainly from the bound level nearest to the dissociation limit. The master equation has an exact analytical solution in this case upon many-quantum transitions and for an arbitrary amount of energy transferred per collision. Simple expressions for the steady-state dissociation rate and for the incubation time are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E.E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Clarendon Press, Oxford, 1974)

    Google Scholar 

  2. J. Troe, J. Chem. Phys. 66, 4745 (1977)

    Article  CAS  Google Scholar 

  3. I. Oref, D.C. Tardy, Chem. Rev. 90, 1407 (1990)

    Article  CAS  Google Scholar 

  4. M.J. Pilling, S.H. Robertson, Annu. Rev. Phys. Chem. 54, 245 (2003)

    Article  CAS  Google Scholar 

  5. A. Fernandez-Ramos, J.A. Miller, S.J. Klippenstein, D.G. Truhlar, Chem. Rev. 106, 4518 (2006)

    Article  CAS  Google Scholar 

  6. E.F. de Lima, J.E.M. Hornos, J. Chem. Phys. 125, 164110 (2006)

    Article  Google Scholar 

  7. N.N. Sobolev, V.V. Sokovnikov, Soviet Physics-Uspekhi (Adv. Phys. Sci.) 16, 350 (1973)

    Article  Google Scholar 

  8. J.H. Kiefer, J.C. Hajduk, Chem. Phys. 38, 329 (1979)

    Article  CAS  Google Scholar 

  9. D.A. Gonzales, P.L. Varghese, J. Phys. Phys. 97, 7612 (1993)

    CAS  Google Scholar 

  10. J.I. Steinfeld, P. Ruttenberg, G. Millot, C. Fanjoux, B. Lavorel, J. Phys. Chem. 95, 9638 (1991)

    Article  CAS  Google Scholar 

  11. F.B. Gordiets, A.I. Osipov, L.A. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Gordon and Breach, London, 1988)

    Google Scholar 

  12. M.L. Strekalov, Chem. Phys. 389, 47 (2011)

    Article  CAS  Google Scholar 

  13. M.L. Strekalov, J. Math. Chem. 50, 1021 (2012)

    Article  CAS  Google Scholar 

  14. M.L. Strekalov, J. Math. Chem. 51, 2104 (2013)

    Article  CAS  Google Scholar 

  15. B. Stevens, Collisional Activation in Gases (Pergamon Press, London, 1967)

    Google Scholar 

  16. D.L. Clarke, K.C. Thompson, R.G. Gilbert, Chem. Phys. Lett. 182, 357 (1991)

    Article  CAS  Google Scholar 

  17. V. Bernshtein, I. Oref, J. Phys. Chem. 97, 12811 (1993)

    Article  CAS  Google Scholar 

  18. L. Yuan, J. Du, A.S. Mullin, J. Chem. Phys. 129, 014303 (2008)

    Article  Google Scholar 

  19. E.W. Montroll, K.E. Shuler, Adv. Chem. Phys. 1, 361 (1958)

    CAS  Google Scholar 

  20. K.E. Shuler, J. Chem. Phys. 31, 1375 (1959)

    Article  CAS  Google Scholar 

  21. D.J. Seery, J. Chem. Phys. 58, 1796 (1973)

    Article  CAS  Google Scholar 

  22. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Nauka, Moscow, 1978). In Russian

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail L. Strekalov.

Appendix: Orthogonalization procedure

Appendix: Orthogonalization procedure

The general theory of orthogonal polynomials offers the following recurrent equation for three neighboring polynomials [22]

$$\begin{aligned} P_{k+1} (n)= \left( {n-\frac{\left\langle {nP_k (n)^{2}} \right\rangle _T }{\left\langle {P_k (n)^{2}} \right\rangle _T }} \right) P_k (n)-\frac{\left\langle {nP_{k-1} (n)P_k (n)} \right\rangle _T }{\left\langle {P_{k-1} (n)^{2}} \right\rangle _T } P_{k-1} (n), \end{aligned}$$
(41)

where \(P_{-1} (n)=0\) and \(P_0 (n)=1\). The angular brackets indicate the averaging with a weight function. In this case, this is the thermal distribution from Eq. (2). The orthonormalized polynomials are given by the equation

$$\begin{aligned} \Phi _k (n , \theta )= \frac{P_k (n)}{\sqrt{\left\langle {P_k (n)^{2}} \right\rangle _T }} \end{aligned}$$
(42)

The orthogonalization procedure allows one to sequentially find all the necessary polynomials beginning with \(\Phi _0 (n , \theta )=1\). The following two polynomials are of the form

$$\begin{aligned} \Phi _1 (n , \theta )= \frac{n-\left\langle n \right\rangle _T }{\sqrt{d_2 }} \end{aligned}$$
(43)

and

$$\begin{aligned} \Phi _2 (n , \theta )= \left( {\frac{d_2 }{d_4 d_2 -d_3^2 }} \right) ^{\frac{1}{2}}\left[ {n^{2}-\left\langle {n^{2}} \right\rangle _T -\frac{d_3 }{d_2 }\left( {n-\left\langle n \right\rangle _T } \right) } \right] \end{aligned}$$
(44)

The coefficients \(d_k \) are defined as

$$\begin{aligned}&\displaystyle d_2 = \left\langle {\left( {n-\left\langle n \right\rangle _T } \right) ^{2}} \right\rangle _T ,\end{aligned}$$
(45)
$$\begin{aligned}&\displaystyle d_3 = \left\langle {\left( {n^{2}-\left\langle {n^{2}} \right\rangle _T } \right) \left( {n-\left\langle n \right\rangle _T } \right) } \right\rangle _T ,\end{aligned}$$
(46)
$$\begin{aligned}&\displaystyle d_4 = \left\langle {\left( {n^{2}-\left\langle {n^{2}} \right\rangle _T } \right) ^{2}} \right\rangle _T \end{aligned}$$
(47)

All the other polynomials were calculated numerically.

In the high-temperature limit, where \(\theta =\hbar \omega _e /k_B T\) is less than unity, the recurrent equation makes it possible to sequentially calculate all the necessary polynomials up to \(N\approx 100\), which corresponds to the anharmonicity constant of bromine (\(x_e =0.005\)). Of particular interest is the case of high temperatures where the vibrational nonequilibrium is produced by a shock wave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strekalov, M.L. An exact analytical solution to the master equation for the vibration–dissociation process of Morse oscillators. J Math Chem 52, 2411–2422 (2014). https://doi.org/10.1007/s10910-014-0391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0391-4

Keywords

Navigation