Skip to main content
Log in

Two reliable wavelet methods to Fitzhugh–Nagumo (FN) and fractional FN equations

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Fractional reaction–diffusion equations serve as more relevant models for studying complex patterns in several fields of nonlinear sciences. In this paper, we have developed the wavelet methods to find the approximate solutions for the Fitzhugh–Nagumo (FN) and fractional FN equations. The proposed method techniques provide the solutions in rapid convergence series with computable terms. To the best of our knowledge, until now there is no rigorous wavelet solutions have been reported for the FN and fractional FN equations arising in gene propagation and model. With the help of Laplace operator and Legendre wavelets operational matrices, the FN equation is converted into an algebraic system. Finally, we have given some numerical examples to demonstrate the validity and applicability of the wavelet methods. The power of the manageable method is confirmed. Moreover, the use of the wavelet methods is found to be accurate, efficient, simple, low computation costs and computationally attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Z. Rida, A.M.A. El-Sayed, A.A.M. Arafa, On the solutions of time-fractional reaction-diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 5(12), 3847–3854 (2010)

    Article  Google Scholar 

  2. A. Cuyt, L. Wuytack, Nonlinear Methods in Numerical Analysis (Elsevier, Amsterdam, 1987)

    Google Scholar 

  3. J.D. Murray, Lectures on Non-linear Differential Equation Models in Biology (Clarenden, Oxford, 1977)

    Google Scholar 

  4. B.I. Henry, S.L. Wearne, Fractional reaction-diffusion. Physica A 276(3–4), 448–455 (2000)

    Article  Google Scholar 

  5. F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15(4), 939–945 (2010)

    Article  Google Scholar 

  6. B. Baeumer, M. Kovács, M.M. Meerschaert, Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 55(10), 2212–2226 (2008)

    Article  Google Scholar 

  7. M.D. Bramson, Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31(5), 531–581 (1978)

    Article  Google Scholar 

  8. S. Momani, R. Qaralleh, Numerical approximations and Padé approximants for a fractional population growth model. Appl. Math. Model. 31(9), 1907–1914 (2007)

    Article  Google Scholar 

  9. G. Hariharan, The homotopy analysis method applied to the Kolmogorov–Petrovskii–Piskunov (KPP) and fractional KPP equations. J. Math. Chem. 51, 992–1000 (2013). doi:10.1007/s10910-012-0132-5

    Article  CAS  Google Scholar 

  10. S.B. Yuste, L. Acedo, K. Lindenberg, Reaction front in an A+B \(\rightarrow \) C reaction-subdiffusion process. Phys. Rev. E. 69(3), part 2, Article ID 036126 (2004)

  11. D.J. Aronson, H.F. Weinberg, Nonlinear Diffusion in Population Genetics Combustion and Never Pulse Propagation (Springer, New York, 1988)

    Google Scholar 

  12. R. Fitzhugh, Impulse and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  CAS  Google Scholar 

  13. R. Fitzhugh, Biological Engineering (McGraw-Hill, New York, 1969), pp. 1–85

    Google Scholar 

  14. K. Seki, M. Wojcik, M. Tachiya, Fractional reaction-diffusion equation. J. Chem. Phys. 119, 2165–2174 (2003)

    Article  CAS  Google Scholar 

  15. N.A. Khan, N.-U. Khan, A. Ara, M. Jamil, Approximate analytical solutions of fractional reaction-diffusion equations. J. King Saud Univ. Sci. 24, 111–118 (2012)

    Article  Google Scholar 

  16. A. Slavova, P. Zecca, CNN model for studying dynamics and traveling wave solutions of FitzHugh–Nagumo equation. J. Comput. Appl. Math. 151, 13–24 (2003)

    Article  Google Scholar 

  17. A.L. Hodgkin, A.F. Huxley, Aquantitive description of membrane current and its application th conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    CAS  Google Scholar 

  18. A. Panfilov, P. Hogeweg, Spiral breakup in a modified Fitzhugh–Nagumo model. Phys. Lett. A 176, 295–299 (1993)

    Article  Google Scholar 

  19. J.S. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2071 (1962)

    Article  Google Scholar 

  20. H.C. Rosu, O. Cornejo-Perez, Super symmetric pairing of kinks for polynomial nonlinearities. Phys. Rev. E 71, 1–13 (2005)

    Article  Google Scholar 

  21. G. Hariharan, K. Kannan, Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 211, 284–292 (2009)

    Article  Google Scholar 

  22. A.M. Wazwaz, A. Gorguis, An analytical study of Fisher’s equation by using Adomian decomposition method. Appl. Math. Comput. 154, 609–620 (2004)

    Article  Google Scholar 

  23. D. Olmos, B. Shizgal, Pseudospectral method of solution of the Fitzhugh–Nagumo equation. Math. Comput. Simul. 79, 2258–2278 (2009)

    Article  Google Scholar 

  24. D. Olmos, B. Shizgal, A spectral method of solution of Fisher’s equation. J. Comput. Appl. Math. 193, 219–242 (2006)

    Article  Google Scholar 

  25. A.A. Soliman, Numerical simulation of the FitzHugh–Nagumo Equations. Abstr. Appl. Anal. Article ID 762516, (2012) 13 p. doi:10.1155/2012/762516

  26. S.J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method (CRC Press/Chapman and Hall, Boca Raton, 2004)

    Google Scholar 

  27. S. Abbasbandy, Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method. Appl. Math. Model. 32, 2706–2714 (2008)

    Article  Google Scholar 

  28. G. Hariharan, K. Kannan, K. Sharma, Haar wavelet in estimating the depth profile of soil temperature. Appl. Math. Comput. 210, 119–225 (2009)

    Article  Google Scholar 

  29. G. Hariharan, K. Kannan, Haar wavelet method for solving nonlinear parabolic equations. J. Math. Chem. 48, 1044–1061 (2010)

    Article  CAS  Google Scholar 

  30. G. Hariharan, K. Kannan, A comparative study of a Haar Wavelet Method and a Restrictive Taylor’s Series Method for solving Convection-diffusion Equations. Int. J. Comput. Methods Eng. Sci. Mech. 11(4), 173–184 (2010)

    Article  Google Scholar 

  31. G. Hariharan, K. Kannan, Haar wavelet method for solving FitzHugh–Nagumo Equation. World Acad. Sci. Eng. Technol. 43, 560–564 (2010)

    Google Scholar 

  32. U. Lepik, Numerical solution of evolution equations by the Haar wavelet method. J. Appl. Math. Comput. 185, 695–704 (2007)

    Article  Google Scholar 

  33. U. Lepik, Solving PDEs with the aid of two-dimensional Haar wavelets. Comput. Math. Appl. 61, 1873–1879 (2011)

    Article  Google Scholar 

  34. H. Jafari, M. Soleymanivaraki, M.A. Firoozjaee, Legendre wavelets for solving fractional differential equations. J. Appl. Math. 7(4), 65–70 (2011, Winter)

    Google Scholar 

  35. Y. Yang, Solving a nonlinear multi-order fractional differential equation using Legendre Pseudo-Spectral method. Appl. Math. 4, 113–118 (2013). doi:10.4236/am.2013.41020

    Article  Google Scholar 

  36. M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, F. Mohammadi, Wavelet collocation method for solving multiorder fractional differential equations. J. Appl. Math. Article ID 54240, (2012). doi:10.1155/2012/542401

  37. H.A. Abdusalam, Analytic and approximate solutions for Nagumo telegraph reaction diffusion equation. Appl. Math. Comput. 157, 515–522 (2004)

    Article  Google Scholar 

  38. D.Y. Chen, Y. Gu, Cole-Hopf quotient and exact solutions of the generalized Fitzhugh-Nagumo equations. Acta Math. Sci. 19(1), 7–14 (1999)

    CAS  Google Scholar 

  39. H. Li, Y. Guo, New exact solutions to the Fitzhugh–Nagumo equation. Appl. Math. Comput. 180, 524–528 (2006)

    Article  Google Scholar 

  40. M. Shih, E. Momoniat, F.M. Mahomed, Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh–Nagumo equation. J. Math. Phys. 46, 023503 (2005)

    Article  Google Scholar 

  41. V. Turut, N. Guzel, Comparing numerical methods for solving time-fractional reaction-diffusion equations. ISRN Mathematical Analysis (2012) Article ID 737206. doi:10.5402/2012/737206

  42. W. Malfliet, Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992)

    Article  Google Scholar 

  43. S.K. Elagan, M. Sayed, Y.S. Hamed, An innovative solutions for the generalized FitzHugh-Nagumo Equation by using the Generalized \(\left( \text{ G }^{\prime }/\text{ G } \right)\)-Expansion Method. Appl. Math. 2, 470–474 (2011)

    Article  Google Scholar 

  44. A. Hajipour, S.M. Mahmoudi, Application of Exp-function method to Fitzhugh–Nagumo equation. World Appl. Sci. J. 9(1), 113–117 (2010)

    Google Scholar 

  45. K. Maleknejad, S. Sohrabi, Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets. Appl. Math. Comput. 186, 836–843 (2007)

    Article  Google Scholar 

  46. M. Razzaghi, S. Yousefi, The Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32, 495–502 (2001)

    Google Scholar 

  47. M. Razzaghi, S. Yousefi, The Legendre wavelets direct method for variational problems. Math. Comput. Simul. 53, 185–192 (2000)

    Article  Google Scholar 

  48. F. Mohammadi, M.M. Hosseini, A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations. J. Frankl. Inst. 348, 1787–1796 (2011)

    Article  Google Scholar 

  49. H. Parsian, Two dimension Legendre wavelets and operational matrices of integration. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21, 101–106 (2005)

    Google Scholar 

  50. S.A. Yousefi, Legendre wavelets method for solving differential equations of Lane–Emden type. App. Math. Comput. 181, 1417–1442 (2006)

    Article  Google Scholar 

  51. F. Yin, J. Song, F. Lu, H. Leng, A coupled method of Laplace transform and legendre wavelets for Lane-Emden-Type differential equations. J. Appl. Math. Article ID 163821 (2012). doi:10.1155/2012/163821

  52. C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems. IEEE Proc. Part D 144(1), 87–94 (1997)

    Google Scholar 

  53. M. Merdan, Solutions of time-fractional reaction-diffusion equation with modified Riemann-Liouville derivative. Int. J. Phys. Sci. 7(15), 2317–2326 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hariharan.

Appendix

Appendix

1.1 Basic idea of Homotopy analysis method (HAM)

In this section the basic ideas of the HAM are presented. Here a description of the method is given to handle the general nonlinear problem.

$$\begin{aligned} Nu_0 \left( t \right) =0, \;t>0 \end{aligned}$$
(7.1)

where N is a nonlinear operator and \(u_0 (t)\) is unknown function of the independent variable t.

1.2 Zero-order deformation equation

Let \(u_0 (t)\) denote the initial guess of the exact solution of Eq. (7.1), \(\hbox {h}\ne 0\) an auxiliary parameter, \(H(t)\ne 0\) an auxiliary function and L is an auxiliary linear operator with the property.

$$\begin{aligned} L\left( {f\left( t \right) } \right) =0, \quad f\left( t \right) =0. \end{aligned}$$
(7.2)

The auxiliary parameter h, the auxiliary function \(H(t)\), and the auxiliary linear operator \(L\) play an important role within the HAM to adjust and control the convergence region of solution series. Liao [26] constructs, using \(q\in \left[ {0,1} \right] \) as an embedding parameter, the so-called zero-order deformation equation.

$$\begin{aligned} \left( {1-q} \right) L[(\emptyset \left( {t;q} \right) -u_0 \left( t \right) ]=qhH\left( t \right) N[\left( {\emptyset \left( {t;q} \right) } \right] , \end{aligned}$$
(7.3)

where \(\emptyset \left( {t;q} \right) \) is the solution which depends on \(\hbox {h},H\left( t \right) ,L, u_0 (t)\) and q. When q = 0, the zero-order deformation Eq. (7.2) becomes

$$\begin{aligned} \emptyset \left( {t;0} \right) =u_0 (t), \end{aligned}$$
(7.4)

and when q = 1, since \({\hbox {h}}\ne 0\) and \(H(t)\ne 0\), the zero-order deformation Eq. (7.1) reduces to,

$$\begin{aligned} N\left[ {\emptyset \left( {t;1} \right) } \right] =0, \end{aligned}$$
(7.5)

So, \(\emptyset \left( {t;1} \right) \) is exactly the solution of the nonlinear equation. Define the so-called \(m\)th order deformation derivatives.

$$\begin{aligned} u_m \left( t \right) =\frac{1}{m!}\frac{\partial ^{m}\emptyset \left( {t;q} \right) }{\partial q^{m}} \end{aligned}$$
(7.6)

If the power series Eq. (7.3) of \(\emptyset \left( {t;q} \right) \) converges at q = 1, then we gets the following series solution:

$$\begin{aligned} u\left( t \right) =u_0 \left( t \right) +\sum \limits _{m=1}^\infty u_m \left( t \right) . \end{aligned}$$
(7.7)

where the terms \(u_m \left( t \right) \) can be determined by the so-called high order deformation described below.

1.3 High-order deformation equation

Define the vector,

$$\begin{aligned} \overrightarrow{{u_{n}}=}\{u_0 \left( t \right) ,u_1 \left( t \right) ,u_2 \left( t \right) \ldots u_n \left( t \right) \end{aligned}$$
(7.8)

Differentiating Eq. (7.3) m times with respect to embedding parameter q, the setting q = 0 and dividing them by \(m!\) , we have the so-called \(m\)th order deformation equation.

$$\begin{aligned} L\left[ {u_m \left( t \right) -\aleph _m u_{m-1} \left( t \right) } \right] =hH\left( t \right) R_m \left( {\overrightarrow{{u_m }},t} \right) , \end{aligned}$$
(7.9)

where

$$\begin{aligned} \aleph _m = \left\{ {{\begin{array}{l} { o,\quad m\le 1} \\ { 1,\quad otherwise} \\ \end{array} }} \right. \end{aligned}$$
(7.10)

and

$$\begin{aligned} R_m \left( {\overrightarrow{{u_m }},t} \right) =\frac{1}{\left( {m-1} \right) !}\frac{\partial ^{m-1}N[\emptyset (t;q)]}{\partial q^{m-1}} \end{aligned}$$
(7.11)

For any given nonlinear operator\(N\), the term \(R_m \left( {\overrightarrow{{u_m }},t} \right) \) can be easily expressed by Eq. (7.11). Thus, we can gain \(u_1 \left( t \right) ,u_2 \left( t \right) \ldots \ldots \). by means of solving the linear high-order deformation with one after the other order in order. The \(m^{th}\) –order approximation of u (t) is given by

$$\begin{aligned} u\left( t \right) =\sum _{k=0}^m {u_k \left( t \right) } \end{aligned}$$
(7.12)

ADM, VIM and HPM are special cases of HAM when we set \(h=-1\) and \(H\left( {r,t} \right) =1\). We will get the same solutions for all the problems by above methods when we set \({\hbox {h}}=-1\) and \(H\left( {r,t} \right) =1\). When the base functions are introduced the \(H\left( {r,t} \right) =1\) is properly chosen using the rule of solution expression, rule of coefficient of ergodicity and rule of solution existence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariharan, G., Rajaraman, R. Two reliable wavelet methods to Fitzhugh–Nagumo (FN) and fractional FN equations. J Math Chem 51, 2432–2454 (2013). https://doi.org/10.1007/s10910-013-0220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0220-1

Keywords

Navigation