Journal of Mathematical Chemistry

, Volume 51, Issue 9, pp 2432–2454 | Cite as

Two reliable wavelet methods to Fitzhugh–Nagumo (FN) and fractional FN equations

  • G. Hariharan
  • R. Rajaraman
Original Paper


Fractional reaction–diffusion equations serve as more relevant models for studying complex patterns in several fields of nonlinear sciences. In this paper, we have developed the wavelet methods to find the approximate solutions for the Fitzhugh–Nagumo (FN) and fractional FN equations. The proposed method techniques provide the solutions in rapid convergence series with computable terms. To the best of our knowledge, until now there is no rigorous wavelet solutions have been reported for the FN and fractional FN equations arising in gene propagation and model. With the help of Laplace operator and Legendre wavelets operational matrices, the FN equation is converted into an algebraic system. Finally, we have given some numerical examples to demonstrate the validity and applicability of the wavelet methods. The power of the manageable method is confirmed. Moreover, the use of the wavelet methods is found to be accurate, efficient, simple, low computation costs and computationally attractive.


Fitzhugh–Nagumo equations Fractional FN equation Haar wavelets Laplace transform method Legendre wavelets  Operational matrices Homotopy analysis method 


  1. 1.
    S.Z. Rida, A.M.A. El-Sayed, A.A.M. Arafa, On the solutions of time-fractional reaction-diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 5(12), 3847–3854 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Cuyt, L. Wuytack, Nonlinear Methods in Numerical Analysis (Elsevier, Amsterdam, 1987)Google Scholar
  3. 3.
    J.D. Murray, Lectures on Non-linear Differential Equation Models in Biology (Clarenden, Oxford, 1977)Google Scholar
  4. 4.
    B.I. Henry, S.L. Wearne, Fractional reaction-diffusion. Physica A 276(3–4), 448–455 (2000)CrossRefGoogle Scholar
  5. 5.
    F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15(4), 939–945 (2010)CrossRefGoogle Scholar
  6. 6.
    B. Baeumer, M. Kovács, M.M. Meerschaert, Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 55(10), 2212–2226 (2008)CrossRefGoogle Scholar
  7. 7.
    M.D. Bramson, Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31(5), 531–581 (1978)CrossRefGoogle Scholar
  8. 8.
    S. Momani, R. Qaralleh, Numerical approximations and Padé approximants for a fractional population growth model. Appl. Math. Model. 31(9), 1907–1914 (2007)CrossRefGoogle Scholar
  9. 9.
    G. Hariharan, The homotopy analysis method applied to the Kolmogorov–Petrovskii–Piskunov (KPP) and fractional KPP equations. J. Math. Chem. 51, 992–1000 (2013). doi: 10.1007/s10910-012-0132-5 CrossRefGoogle Scholar
  10. 10.
    S.B. Yuste, L. Acedo, K. Lindenberg, Reaction front in an A+B \(\rightarrow \) C reaction-subdiffusion process. Phys. Rev. E. 69(3), part 2, Article ID 036126 (2004)Google Scholar
  11. 11.
    D.J. Aronson, H.F. Weinberg, Nonlinear Diffusion in Population Genetics Combustion and Never Pulse Propagation (Springer, New York, 1988)Google Scholar
  12. 12.
    R. Fitzhugh, Impulse and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)CrossRefGoogle Scholar
  13. 13.
    R. Fitzhugh, Biological Engineering (McGraw-Hill, New York, 1969), pp. 1–85Google Scholar
  14. 14.
    K. Seki, M. Wojcik, M. Tachiya, Fractional reaction-diffusion equation. J. Chem. Phys. 119, 2165–2174 (2003)CrossRefGoogle Scholar
  15. 15.
    N.A. Khan, N.-U. Khan, A. Ara, M. Jamil, Approximate analytical solutions of fractional reaction-diffusion equations. J. King Saud Univ. Sci. 24, 111–118 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Slavova, P. Zecca, CNN model for studying dynamics and traveling wave solutions of FitzHugh–Nagumo equation. J. Comput. Appl. Math. 151, 13–24 (2003)CrossRefGoogle Scholar
  17. 17.
    A.L. Hodgkin, A.F. Huxley, Aquantitive description of membrane current and its application th conduction and excitation in nerve. J. Physiol. 117, 500 (1952)Google Scholar
  18. 18.
    A. Panfilov, P. Hogeweg, Spiral breakup in a modified Fitzhugh–Nagumo model. Phys. Lett. A 176, 295–299 (1993)CrossRefGoogle Scholar
  19. 19.
    J.S. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2071 (1962)CrossRefGoogle Scholar
  20. 20.
    H.C. Rosu, O. Cornejo-Perez, Super symmetric pairing of kinks for polynomial nonlinearities. Phys. Rev. E 71, 1–13 (2005)CrossRefGoogle Scholar
  21. 21.
    G. Hariharan, K. Kannan, Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 211, 284–292 (2009)CrossRefGoogle Scholar
  22. 22.
    A.M. Wazwaz, A. Gorguis, An analytical study of Fisher’s equation by using Adomian decomposition method. Appl. Math. Comput. 154, 609–620 (2004)CrossRefGoogle Scholar
  23. 23.
    D. Olmos, B. Shizgal, Pseudospectral method of solution of the Fitzhugh–Nagumo equation. Math. Comput. Simul. 79, 2258–2278 (2009)CrossRefGoogle Scholar
  24. 24.
    D. Olmos, B. Shizgal, A spectral method of solution of Fisher’s equation. J. Comput. Appl. Math. 193, 219–242 (2006)CrossRefGoogle Scholar
  25. 25.
    A.A. Soliman, Numerical simulation of the FitzHugh–Nagumo Equations. Abstr. Appl. Anal. Article ID 762516, (2012) 13 p. doi: 10.1155/2012/762516
  26. 26.
    S.J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method (CRC Press/Chapman and Hall, Boca Raton, 2004)Google Scholar
  27. 27.
    S. Abbasbandy, Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method. Appl. Math. Model. 32, 2706–2714 (2008)CrossRefGoogle Scholar
  28. 28.
    G. Hariharan, K. Kannan, K. Sharma, Haar wavelet in estimating the depth profile of soil temperature. Appl. Math. Comput. 210, 119–225 (2009)CrossRefGoogle Scholar
  29. 29.
    G. Hariharan, K. Kannan, Haar wavelet method for solving nonlinear parabolic equations. J. Math. Chem. 48, 1044–1061 (2010)CrossRefGoogle Scholar
  30. 30.
    G. Hariharan, K. Kannan, A comparative study of a Haar Wavelet Method and a Restrictive Taylor’s Series Method for solving Convection-diffusion Equations. Int. J. Comput. Methods Eng. Sci. Mech. 11(4), 173–184 (2010)CrossRefGoogle Scholar
  31. 31.
    G. Hariharan, K. Kannan, Haar wavelet method for solving FitzHugh–Nagumo Equation. World Acad. Sci. Eng. Technol. 43, 560–564 (2010)Google Scholar
  32. 32.
    U. Lepik, Numerical solution of evolution equations by the Haar wavelet method. J. Appl. Math. Comput. 185, 695–704 (2007)CrossRefGoogle Scholar
  33. 33.
    U. Lepik, Solving PDEs with the aid of two-dimensional Haar wavelets. Comput. Math. Appl. 61, 1873–1879 (2011)CrossRefGoogle Scholar
  34. 34.
    H. Jafari, M. Soleymanivaraki, M.A. Firoozjaee, Legendre wavelets for solving fractional differential equations. J. Appl. Math. 7(4), 65–70 (2011, Winter)Google Scholar
  35. 35.
    Y. Yang, Solving a nonlinear multi-order fractional differential equation using Legendre Pseudo-Spectral method. Appl. Math. 4, 113–118 (2013). doi: 10.4236/am.2013.41020 CrossRefGoogle Scholar
  36. 36.
    M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, F. Mohammadi, Wavelet collocation method for solving multiorder fractional differential equations. J. Appl. Math. Article ID 54240, (2012). doi: 10.1155/2012/542401
  37. 37.
    H.A. Abdusalam, Analytic and approximate solutions for Nagumo telegraph reaction diffusion equation. Appl. Math. Comput. 157, 515–522 (2004)CrossRefGoogle Scholar
  38. 38.
    D.Y. Chen, Y. Gu, Cole-Hopf quotient and exact solutions of the generalized Fitzhugh-Nagumo equations. Acta Math. Sci. 19(1), 7–14 (1999)Google Scholar
  39. 39.
    H. Li, Y. Guo, New exact solutions to the Fitzhugh–Nagumo equation. Appl. Math. Comput. 180, 524–528 (2006)CrossRefGoogle Scholar
  40. 40.
    M. Shih, E. Momoniat, F.M. Mahomed, Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh–Nagumo equation. J. Math. Phys. 46, 023503 (2005)CrossRefGoogle Scholar
  41. 41.
    V. Turut, N. Guzel, Comparing numerical methods for solving time-fractional reaction-diffusion equations. ISRN Mathematical Analysis (2012) Article ID 737206. doi: 10.5402/2012/737206
  42. 42.
    W. Malfliet, Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992)CrossRefGoogle Scholar
  43. 43.
    S.K. Elagan, M. Sayed, Y.S. Hamed, An innovative solutions for the generalized FitzHugh-Nagumo Equation by using the Generalized \(\left( \text{ G }^{\prime }/\text{ G } \right)\)-Expansion Method. Appl. Math. 2, 470–474 (2011)CrossRefGoogle Scholar
  44. 44.
    A. Hajipour, S.M. Mahmoudi, Application of Exp-function method to Fitzhugh–Nagumo equation. World Appl. Sci. J. 9(1), 113–117 (2010)Google Scholar
  45. 45.
    K. Maleknejad, S. Sohrabi, Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets. Appl. Math. Comput. 186, 836–843 (2007)CrossRefGoogle Scholar
  46. 46.
    M. Razzaghi, S. Yousefi, The Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32, 495–502 (2001)Google Scholar
  47. 47.
    M. Razzaghi, S. Yousefi, The Legendre wavelets direct method for variational problems. Math. Comput. Simul. 53, 185–192 (2000)CrossRefGoogle Scholar
  48. 48.
    F. Mohammadi, M.M. Hosseini, A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations. J. Frankl. Inst. 348, 1787–1796 (2011)CrossRefGoogle Scholar
  49. 49.
    H. Parsian, Two dimension Legendre wavelets and operational matrices of integration. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21, 101–106 (2005)Google Scholar
  50. 50.
    S.A. Yousefi, Legendre wavelets method for solving differential equations of Lane–Emden type. App. Math. Comput. 181, 1417–1442 (2006)CrossRefGoogle Scholar
  51. 51.
    F. Yin, J. Song, F. Lu, H. Leng, A coupled method of Laplace transform and legendre wavelets for Lane-Emden-Type differential equations. J. Appl. Math. Article ID 163821 (2012). doi: 10.1155/2012/163821
  52. 52.
    C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems. IEEE Proc. Part D 144(1), 87–94 (1997)Google Scholar
  53. 53.
    M. Merdan, Solutions of time-fractional reaction-diffusion equation with modified Riemann-Liouville derivative. Int. J. Phys. Sci. 7(15), 2317–2326 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics, School of Humanities and SciencesSASTRA UniversityThanjavurIndia

Personalised recommendations