Advertisement

Journal of Mathematical Chemistry

, Volume 49, Issue 8, pp 1667–1686 | Cite as

Characterization of unstable enzyme systems which evolve according to a three-exponential equation

  • E. Arribas
  • J. M. Villalba
  • M. Garcia-Moreno
  • M. L. Amo
  • F. Garcia-Sevilla
  • F. Garcia-Molina
  • J. L. Muñoz-Muñoz
  • R. Varon
Original Paper
  • 136 Downloads

Abstract

The time course of an enzyme catalyzed reaction is normally followed either by monitoring the instantaneous concentration or velocity of an enzyme species or a product. In many enzyme catalyzed reactions these time variations are multi-exponential. The accurate fit of the relevant curves to obtain the kinetic parameters involved can be difficult using conventional methods (Galvez et al. in J Theor Biol 89:37–44, 1981; Garcia-Canovas et al. in Biochim Biophys Acta 912:417–423, 1987; Tudela et al. in Biochim Biophys Acta 912:408–416, 1987; Teruel et al. in Biochim Biophys Acta 911:256–260, 1987; Garrido del Solo et al. in Biochem J 294:459–464, 1993; Varon et al. in Int J Biochem 25:1889–1895, 1993; Garrido del Solo et al. in An Quim 89:319–324, 1993; Varon et al. in J Mol Catal 83:273–285, 1993; Garrido del Solo et al. in Biochem J 303(Pt 2):435–440, 1994; Garrido del Solo and Varon in An Quim 91:13–18, 1995; Garrido del Solo et al. in Biosystems 38:75–86, 1996; Garrido del Solo et al. in Int J Biochem Cell Biol 28:1371–1379, 1996; Garrido del Solo et al. in Int J Biochem Cell Biol 30:735–743, 1998; Varon et al. in J Mol Catal 59:97–118, 1990). In order to circumvent such difficulties Arribas et al. (J Math Chem 44:379–404, 2008) proposed an evaluation method which is applicable regardless of the complexity of the kinetic equation. This procedure is based on the numerical determination of statistical moments from experimental time progress curves. The fitting of these experimentally obtained moments to the corresponding theoretical symbolic expressions allows, in most cases, all the individual rate constants involved to be evaluated. In this paper we perform a general analysis that can be applied to any unstable enzyme system described by a three-exponential equation and apply it to a substrates induced enzyme inactivation process that is described by this type of equation. To verify the goodness of the method we have simulated time progress curves and applied the suggested procedure to these curves, obtaining kinetic parameters values very close to those used to obtain simulated curves. Finally, we compare our results with those obtained in previous contributions in which other procedures were used.

Keywords

Three-exponential equations Statistical moments Enzyme Kinetics Simulated progress curves Numerical integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Galvez J., Varon R., Garcia-Carmona F. III: Kinetics of enzyme reactions with inactivation steps. J. Theor. Biol. 89, 37–44 (1981)CrossRefGoogle Scholar
  2. 2.
    Garcia-Canovas F., Tudela J., Martinez-Madrid C., Varon R., Garcia-Carmona F., Lozano J.A.: Kinetic study on the suicide inactivation of tyrosinase induced by catechol. Biochim. Biophys. Acta 912, 417–423 (1987)CrossRefGoogle Scholar
  3. 3.
    Tudela J., Garcia-Canovas F., Varon R., Garcia-Carmona F., Galvez J., Lozano J.A.: Transient-phase kinetics of enzyme inactivation induced by suicide substrates. Biochim. Biophys. Acta 912, 408–416 (1987)CrossRefGoogle Scholar
  4. 4.
    Teruel J.A., Tudela J., Fernandez-Belda F., Garcia-Carmona F., Gomez-Fernandez J.C., Garcia-Canovas F.: Kinetic characterization of an enzymatic irreversible inhibition measured in the presence of coupling enzymes. The inhibition of adenosine triphosphatase from sarcoplasmic reticulum by fluorescein isothiocyanate. Biochim. Biophys. Acta 911, 256–260 (1987)CrossRefGoogle Scholar
  5. 5.
    Garrido del Solo C., Garcia-Canovas F., Havsteen B.H., Varon R.: Kinetic analysis of a Michaelis–Menten mechanism in which the enzyme is unstable. Biochem. J. 294, 459–464 (1993)Google Scholar
  6. 6.
    Varon R., Havsteen B.H., Valero E., Garrido del Solo C., Rodriguez-Lopez J.N., Garcia-Canovas F.: The kinetics of an enzyme catalyzed reaction in the presence of an unstable irreversible modifier. Int. J. Biochem. 25, 1889–1895 (1993)CrossRefGoogle Scholar
  7. 7.
    Garrido del Solo C., Garcia-Canovas F., Havsteen B.H., Varon R.: Kinetic effect of the substrate instability on the Michaelis–Menten mechanism. An. Quim. 89, 319–324 (1993)Google Scholar
  8. 8.
    Varon R., Valero E., Garrido del Solo C., Garcia-Canovas F., Havsteen B.H.: Kinetic analysis of a Michaelis–Menten mechanism with an unstable substrate. J. Mol. Catal. 83, 273–285 (1993)CrossRefGoogle Scholar
  9. 9.
    Garrido del Solo C., Garcia-Canovas F., Havsteen B.H., Valero E., Varon R.: Kinetics of an enzyme reaction in which both the enzyme-substrate complex and the product are unstable or only the product is unstable. Biochem. J. 303(Pt 2), 435–440 (1994)Google Scholar
  10. 10.
    Garrido del Solo C., Varon R.: Kinetic behaviour of an enzymatic system with unstable product: conditions of limiting substrate concentration. An. Quim. 91, 13–18 (1995)Google Scholar
  11. 11.
    Garrido del Solo C., Havsteen B.H., Varon R.: An analysis of the kinetics of enzymatic systems with unstable species. Biosystems 38, 75–86 (1996)CrossRefGoogle Scholar
  12. 12.
    Garrido del Solo C., Garcia-Canovas F., Havsteen B.H., Varon R.: Analysis of progress curves of enzymatic reaction with unstable species. Int. J. Biochem. Cell Biol. 28, 1371–1379 (1996)CrossRefGoogle Scholar
  13. 13.
    Garrido del Solo C., Garcia-Canovas F., Tudela J., Havsteen B.H., Varon R.: New method of evaluation of the kinetic parameters of bi-exponential enzyme-catalyzed reactions. Int. J. Biochem. Cell Biol. 30, 735–743 (1998)CrossRefGoogle Scholar
  14. 14.
    Varon R., Garcia-Moreno M., Garcia-Canovas F., Tudela J.: Transient-phase kinetics of enzyme inactivation induced by suicide substrates: enzymes involving two substrates. J. Mol. Catal. 59, 97–118 (1990)CrossRefGoogle Scholar
  15. 15.
    Arribas E., Bisswanger H., Sotos-Lomas A., Garcia-Moreno M., Garcia-Canovas F., Donoso-Pardo J., Muñoz-Izquierdo F., Varon R.: A method, based on statistical moments, to evaluate the kinetic parameters involved in unstable enzyme systems. J. Math. Chem. 44, 379–404 (2008)CrossRefGoogle Scholar
  16. 16.
    Duggleby R.G.: Progress curves of reactions catalyzed by unstable enzymes. A theoretical approach. J. Theor. Biol. 123, 67–80 (1986)CrossRefGoogle Scholar
  17. 17.
    Varon R., Garrido del Solo C., Garcia-Moreno M., Sanchez-Gracia A., Garcia-Canovas F.: Final phase of enzyme reactions following a Michaelis–Menten mechanisms in which the free enzyme and/or the enzyme-substrate complex are unstable. Biol. Chem. Hoppe Seyler 375, 35–42 (1994)CrossRefGoogle Scholar
  18. 18.
    Pike S.J., Duggleby R.G.: Resistance to inactivation by EGTA of the enzyme-substrate and enzyme-phosphate complexes of alkaline phosphatase. Biochem. J. 244, 781–785 (1987)Google Scholar
  19. 19.
    Rakitzis E.T.: Kinetics of irreversible enzyme inhibition by an unstable inhibitor. Biochem. J. 141, 601–603 (1974)Google Scholar
  20. 20.
    Rakitzis E.T.: Kinetics of irreversible enzyme inhibition by an unstable inhibitor. Biochem. J. 199, 462–463 (1981)Google Scholar
  21. 21.
    Topham C.M.: Computer simulations of the kinetics of irreversible enzyme inhibition by an unstable inhibitor. Biochem. J. 240, 817–820 (1986)Google Scholar
  22. 22.
    Topham C.M.: A generalized theoretical treatment of the kinetics of an enzyme-catalysed reaction in the presence of an unstable irreversible modifier. J. Theor. Biol. 145, 547–572 (1990)CrossRefGoogle Scholar
  23. 23.
    Valero E., Varon R., Garcia-Carmona F.: A kinetic study of irreversible enzyme inhibition by an inhibitor that is rendered unstable by enzymic catalysis. The inhibition of polyphenol oxidase by L-cysteine. Biochem. J. 277(Pt 3), 869–874 (1991)Google Scholar
  24. 24.
    Casas J.L., Garcia-Canovas F., Tudela J., Acosta M.: A kinetic study of simultaneous suicide inactivation and irreversible inhibition of an enzyme. Application to 1-aminocyclopropane-1-carboxylate (ACC) synthase inactivation by its substrate S-adenosylmethionine. J. Enzyme Inhib. 7, 1–14 (1993)CrossRefGoogle Scholar
  25. 25.
    Navarro-Lozano M.J., Valero E., Varon R., Garcia-Carmona F.: Kinetic study of an enzyme-catalysed reaction in the presence of novel irreversible-type inhibitors that react with the product of enzymatic catalysis. Bull. Math. Biol. 57, 157–168 (1995)CrossRefGoogle Scholar
  26. 26.
    Manjabacas M.C., Valero E., Moreno-Conesa M., Garcia-Moreno M., Molina-Alarcon M., Varon R.: Linear mixed irreversible inhibition of the autocatalytic activation of zymogens. Kinetic analysis checked by simulated progress curves. Int. J. Biochem. Cell Biol. 34, 358–369 (2002)CrossRefGoogle Scholar
  27. 27.
    Masia-Perez J., Valero E., Escribano J., Arribas E., Villalba J.M., Garcia-Moreno M., Garcia-Sevilla F., Amo M.L., Varon R.: A general model for autocatalytic zymogen activation inhibited by two different and mutually exclusive inhibitors. MATCH Commun. Math. Comput. Chem 64, 513–520 (2010)Google Scholar
  28. 28.
    Garcia-Carmona F., Garcia-Canovas F., Havsteen B.H., Varon R.: Kinetic study of the pathway of melanization between L-dopa and dopachrome. Biochim. Biophys. Acta 717, 124–131 (1982)Google Scholar
  29. 29.
    Escribano J., Garcia-Canovas F., Garcia-Carmona F., Lozano J.A.: Kinetic study of the transient phase of a second-order chemical reaction coupled to an enzymic step: application to the oxidation of chlorpromazine by peroxidase-hydrogen peroxide, Biochim. Biophys. Acta 831, 313–320 (1985)CrossRefGoogle Scholar
  30. 30.
    Espin J.C., Varon R., Tudela J., Garcia-Canovas F.: Kinetic study of the oxidation of 4-hydroxyanisole catalyzed by tyrosinase. Biochem. Mol. Biol. Int. 41, 1265–1276 (1997)Google Scholar
  31. 31.
    Espin J.C., Garcia-Ruiz P.A., Tudela J., Garcia-Canovas F.: Study of stereospecificity in mushroom tyrosinase. Biochem. J. 331(Pt 2), 547–551 (1998)Google Scholar
  32. 32.
    Gutfreund H.: Enzymes: Physical Principles. Wiley, New York (1972)Google Scholar
  33. 33.
    Keleti T.: Determination of Michaelis–Menten parameters from initial velocity measurements using unstable substrate. Anal. Biochem. 152, 48–51 (1986)CrossRefGoogle Scholar
  34. 34.
    Tudela J., Garcia-Canovas F., Varon R., Jimenez M., Garcia-Carmona F., Lozano J.A.: Kinetic study in the transient phase of the suicide inactivation of frog epidermis tyrosinase. Biophys. Chem. 30, 303–310 (1988)CrossRefGoogle Scholar
  35. 35.
    Varon R., Garcia-Canovas F., Garcia-Carmona F., Tudela J., Roman A., Vazquez A.: Kinetics of a model for zymogen activation: the case of high activating enzyme concentrations. J. Theor. Biol. 132, 51–59 (1988)CrossRefGoogle Scholar
  36. 36.
    Walsh C.T.: Suicide substrates, mechanism-based enzyme inactivators: recent developments. Annu. Rev. Biochem. 53, 493–535 (1984)CrossRefGoogle Scholar
  37. 37.
    Waley S.G.: Kinetics of suicide substrates. Practical procedures for determining parameters. Biochem. J. 227, 843–849 (1985)Google Scholar
  38. 38.
    Tudela J., Garcia-Canovas F., Varon R., Jimenez M., Garcia-Carmona F., Lozano J.A.: Kinetic characterization of dopamine as a suicide substrate of tyrosinase. J. Enzyme Inhib. 2, 47–56 (1987)CrossRefGoogle Scholar
  39. 39.
    Burke M.A., Maini P.K., Murray J.D.: On the kinetics of suicide substrates. Biophys. Chem. 37, 81–90 (1990)CrossRefGoogle Scholar
  40. 40.
    Varon R., Fuentes M.E., Garcia-Moreno M., Garcia-Sevilla F., Arias E., Valero E., Arribas E.: Contribution of the intra- and intermolecular routes in autocatalytic zymogen activation: application to pepsinogen activation. Acta Biochim. Pol. 53, 407–420 (2006)Google Scholar
  41. 41.
    Garcia-Canovas F., Tudela J., Varon R., Vazquez A.: Experimental methods for kinetic study of suicide substrates. J. Enzyme Inhib. 3, 81–90 (1989)CrossRefGoogle Scholar
  42. 42.
    Wimalasena K., Haines D.C.: A general progress curve method for the kinetic analysis of suicide enzyme inhibitors. Anal. Biochem. 234, 175–182 (1996)CrossRefGoogle Scholar
  43. 43.
    Duggleby R.G.: Estimation of the initial velocity of enzyme-catalysed reactions by non-linear regression analysis of progress curves. Biochem. J. 228, 55–60 (1985)Google Scholar
  44. 44.
    Park B.K., Kitteringham N.R., O’Neill P.M.: Metabolism of fluorine-containing drugs. Annu. Rev. Pharmacol. Toxicol. 41, 443–470 (2001)CrossRefGoogle Scholar
  45. 45.
    Uttamchandani M., Wang J., Yao S.Q.: Protein and small molecule microarrays: powerful tools for high-throughput proteomics. Mol. Biosyst. 2, 58–68 (2006)CrossRefGoogle Scholar
  46. 46.
    Gills J.J., Jeffery E.H., Matusheski N.V., Moon R.C., Lantvit D.D., Pezzuto J.M.: Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett. 236, 72–79 (2006)CrossRefGoogle Scholar
  47. 47.
    Whittle W.L., Holloway A.C., Lye S.J., Gibb W., Challis J.R.: Prostaglandin production at the onset of ovine parturition is regulated by both estrogen-independent and estrogen-dependent pathways. Endocrinology 141, 3783–3791 (2000)CrossRefGoogle Scholar
  48. 48.
    Ingraham L.L., Corse J., Makower J.B.: Kinetics or reaction inactivation of polyphenoloxidase. J. Am. Chem. Soc. 74, 2623 (1952)CrossRefGoogle Scholar
  49. 49.
    Ingraham L.L.: Reaction-inactivation of polyphenol oxidase: catechol and oxygen dependence. J. Am. Chem. Soc. 77, 2875–2876 (1955)CrossRefGoogle Scholar
  50. 50.
    Tokuyama K., Dawson C.R.: On the reaction inactivation of ascorbic acid oxidase. Biochim. Biophys. Acta 56, 427–439 (1962)CrossRefGoogle Scholar
  51. 51.
    Frere J.M., Dormans C., Lenzini V.M., Duyckaerts C.: Interaction of clavulanate with the beta-lactamases of Streptomyces albus G and Actinomadura R39. Biochem. J. 207, 429–436 (1982)Google Scholar
  52. 52.
    Faraci W.S., Pratt R.F.: Mechanism of inhibition of the PC1 beta-lactamase of Staphylococcus aureus by cephalosporins: importance of the 3′-leaving group. Biochemistry 24, 903–910 (1985)CrossRefGoogle Scholar
  53. 53.
    Knight G.C., Waley S.G.: Inhibition of class C beta-lactamases by (1′R,6R)-6-(1′-hydroxy)benzylpenicillanic acid SS-dioxide. Biochem. J. 225, 435–439 (1985)Google Scholar
  54. 54.
    Fisher J., Charnas R.L., Knowles J.R.: Kinetic studies on the inactivation of Escherichia coli RTEM beta-lactamase by clavulanic acid. Biochemistry 17, 2180–2184 (1978)CrossRefGoogle Scholar
  55. 55.
    Fernandez-Belda F.J., Garcia-Carmona F., Garcia-Canovas F., Lozano J.A., Gomez-Fernandez J.C.: Mitochondrial ATPase inactivation by interaction with its substrate. Arch. Biochem. Biophys. 215, 40–46 (1982)CrossRefGoogle Scholar
  56. 56.
    Waley S.G.: Kinetics of suicide substrates. Biochem. J. 185, 771–773 (1980)Google Scholar
  57. 57.
    Waley S.G.: An easy method for the determination of initial rates. Biochem. J. 193, 1009–1012 (1981)Google Scholar
  58. 58.
    Wang Z.X., Tsou C.L.: An alternative method for determining inhibition rate constants by following the substrate reaction. J. Theor. Biol. 142, 531–549 (1990)CrossRefGoogle Scholar
  59. 59.
    C. Garrido del Solo, Análisis del comportamiento cinético de sistemas enzimáticos con especies inestables, Doctoral Thesis, Universidad de Castilla-La Mancha, Albacete, 1994Google Scholar
  60. 60.
    Varon R., Molina-Alarcon M., Garcia-Moreno M., Garcia-Sevilla F., Valero E.: Kinetic analysis of the opened bicyclic enzyme cascades. Biol. Chem. Hoppe Seyler 375, 365–371 (1994)CrossRefGoogle Scholar
  61. 61.
    Varon R., Havsteen B.H., Molina-Alarcon M., Szedlacsek S.E., Garcia-Moreno M., Garcia-Canovas F.: Kinetic analysis of reversible closed bicyclic enzyme cascades covering the whole course of the reaction. Int. J. Biochem. 26, 787–797 (1994)CrossRefGoogle Scholar
  62. 62.
    Duggleby R.G.: Preparation of concentrated solutions of some common solutes by means of calculated molalities. Comput. Biol. Med. 15, 375–379 (1985)CrossRefGoogle Scholar
  63. 63.
    Varon R., Havsteen B.H., Vazquez A., Garcia-Moreno M., Valero E., Garcia-Canovas F.: Kinetics of the trypsinogen activation by enterokinase and trypsin. J. Theor. Biol. 145, 123–131 (1990)CrossRefGoogle Scholar
  64. 64.
    Fehlberg E.: Classische Runge–Kutta Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anvendung auf Wärmeleitungs-probleme. Computing 6, 61–71 (1970)CrossRefGoogle Scholar
  65. 65.
    Mathews J.H., Fink K.D.: Ecuaciones Diferenciales Ordinarias. Prentice Hall, Madrid (1999)Google Scholar
  66. 66.
    Bronstein I.N., Semendjajew K.A., Musiol G., Mühlig H.: Taschenbuch der Mathematik. Verlag Harri Deutsch, Frankfurt and Main (2005)Google Scholar
  67. 67.
    Garcia-Sevilla F., Garrido del Solo C., Duggleby R.G., Garcia-Canovas F., Peyro R., Varon R.: Use of a windows program for simulation of the progress curves of reactants and intermediates involved in enzyme-catalyzed reactions. Biosystems 54, 151–164 (2000)CrossRefGoogle Scholar
  68. 68.
    Varon R., Picazo M., Alberto A., Arribas E., Masia-Perez J., Arias E.: General solution of the set of differential equations describing the time invariant linear dynamics systems. Application to enzyme systems. Appl. Math. Sci. 1, 281–300 (2007)Google Scholar
  69. 69.
    Arribas E., Munoz-Lopez A., Garcia-Meseguer M.J., Lopez-Najera A., Avalos L., Garcia-Molina F., Garcia-Moreno M., Varon R.: Mean lifetime and first-passage time of the enzyme species involved in an enzyme reaction. Application to unstable enzyme systems. Bull. Math. Biol. 70, 1425–1449 (2008)CrossRefGoogle Scholar
  70. 70.
    Garcia-Sevilla F., Arribas E., Bisswanger H., Garcia-Moreno M., Garcia-Canovas F., Gomez-Ladron de Guevara R., Duggleby R.G., Yago J.M., Varon R.: wREFERASS: rate equations for enzyme reactions at steady state under MS-Windows. MATCH Commun. Math. Comput. Chem. 63, 553–571 (2010)Google Scholar
  71. 71.
    Varon R., Ruiz-Galea M.M., Garrido del Solo C., Garcia-Sevilla F., Garcia-Moreno M., Garcia-Canovas F., Havsteen B.H.: Transient phase of enzyme reactions. Time course equations of the strict and the rapid equilibrium conditions and their computerized derivation. Biosystems 50, 99–126 (1999)CrossRefGoogle Scholar
  72. 72.
    Garrido del Solo C., Yago J.M., Garcia-Moreno M., Havsteen B.H., Garcia-Canovas F., Varon R.: The influence of product instability on slow-binding inhibition. J. Enzyme Inhib. Med. Chem. 20, 309–316 (2005)CrossRefGoogle Scholar
  73. 73.
    Havsteen B.H., Garcia-Moreno M., Valero E., Manjabacas M.C., Varon R.: The kinetics of enzyme systems involving activation of zymogens. Bull. Math. Biol. 55, 561–583 (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • E. Arribas
    • 1
  • J. M. Villalba
    • 2
  • M. Garcia-Moreno
    • 3
  • M. L. Amo
    • 3
  • F. Garcia-Sevilla
    • 4
  • F. Garcia-Molina
    • 5
  • J. L. Muñoz-Muñoz
    • 5
  • R. Varon
    • 3
  1. 1.Applied Physics DepartmentUniversity of Castilla-La Mancha (UCLM)AlbaceteSpain
  2. 2.Medical Sciencie DepartmentUCLMAlbaceteSpain
  3. 3.Departamento de Quimica-Fisica, Escuela de Ingenieros Industriales de AlbaceteUCLMAlbaceteSpain
  4. 4.Departamento de Ingenieria Electronica, Electrica, Automatica y ComunicacionesUCLMAlbaceteSpain
  5. 5.Departamento Bioquimica y Biologia Molecular AUniversidad de MurciaMurciaSpain

Personalised recommendations