Advertisement

Journal of Low Temperature Physics

, Volume 171, Issue 1–2, pp 87–106 | Cite as

The Gaussian Approximation to Homogeneous Bose Gas

  • Fabio Paolini
  • M. O. C. Pires
Article

Abstract

We study low-lying excitations of a spinless homogeneous Bose gas with repulsive interaction at zero temperature in terms of the Gaussian mean field approximation. The dynamical equations of this approximation have been derived for small displacements from the static Hartree-Fock-Bogoliubov solution. We obtain a gapped continuous band of excitations above a discrete branch with phonon behavior at long wavelength regime. We also discuss the available forms of excitations and conclude that there are constraints on the first order deviations of the Gaussian approximation parameters and they are generated by an infinitesimal unitary transformation.

Keywords

Bose-Einstein condensation Quantum gases Mean field theories 

Notes

Acknowledgements

The authors would like to thank A. F. R. de Toledo Piza for introducing the subject as well as discussion. This work was supported by the FAPESP and CNPq.

References

  1. 1.
    M.H. Anderson, J.R. Ensher, M.R. Mathews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.D. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    P.A. Ruprecht, M. Edwards, K. Burnett, C.W. Clark, Phys. Rev. A 54, 4178 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    M. Edwards, P.A. Ruprecht, K. Burnett, R.J. Dodd, C.W. Clark, Phys. Rev. Lett. 77, 1671 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    D.A.W. Hutchinson, E. Zaremba, A. Griffin, Phys. Rev. Lett. 78, 1842 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    R.J. Dodd, M. Edwards, C.W. Clark, K. Burnett, Phys. Rev. A 57, R32 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, 1986) Google Scholar
  10. 10.
    J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004) ADSMATHCrossRefGoogle Scholar
  11. 11.
    H. Shi, A. Griffin, Phys. Rep. 304(1) (1998) Google Scholar
  12. 12.
    S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000) ADSCrossRefGoogle Scholar
  13. 13.
    M.O.C. Pires, E.J.V. Passos, Phys. Rev. A 77, 033606 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    A. Griffin, Excitations in a Bose-Condensed Liquid (Cambridge University Press, Cambridge, 1993) CrossRefGoogle Scholar
  15. 15.
    A. Griffin, Phys. Rev. B 53, 9341 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    P.C. Hohenberg, P.C. Martin, Ann. Phys. 34, 291 (1965) ADSCrossRefGoogle Scholar
  17. 17.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, 3rd edn., vol. 5 (Butterworth-Heinemann, Oxford, 1980) Google Scholar
  18. 18.
    M.R. Andrews, D.M. Kurn, H.-J. Miesner, D.S. Durfee, C.G. Townsend, S. Inouye, W. Ketterle, Phys. Rev. Lett. 79, 553 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    N.M. Proukakis, K. Burnett, H.T.C. Stoof, Phys. Rev. A 57, 1230 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    F. Takano, Phys. Rev. 123, 699 (1961) ADSCrossRefGoogle Scholar
  21. 21.
    D.W.A. Hutchinson, K. Burnett, R.J. Dodd, S.A. Morgan, M. Rusch, E. Zaremba, N.P. Proukakis, M. Edwards, C.W. Clark, J. Phys. B 33, 3825 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    P. Tommasini, E.J.V. Passos, M.O.C. Pires, A.F.R. de Toledo Piza, J. Phys. Condens. Matter 17, 3165 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    A.K. Kerman, P. Tommasini, Ann. Phys. 260, 250 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    L.C.Y. Yong, A.F.R. de Toledo Piza, Phys. Rev. D 46, 742 (1992) ADSCrossRefGoogle Scholar
  25. 25.
    P. Tommasini, A.F.R. de Toledo Piza, Ann. Phys. 253, 198 (1997) ADSMATHCrossRefGoogle Scholar
  26. 26.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems (Dover, New York, 2003) Google Scholar
  27. 27.
    S. Giorgini, Phys. Rev. A 57, 2949 (1998) ADSCrossRefGoogle Scholar
  28. 28.
    P. Tommasini, E.J.V. Passos, A.F.R. de Toledo Piza, M.S. Hussein, Phys. Rev. A 67, 023606 (2003) ADSCrossRefGoogle Scholar
  29. 29.
    A.K. Kerman, P. Tommasini, Ann. Phys. 260, 250 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    A.K. Kerman, P. Tommasini, Phys. Rev. B 56, 14733 (1997) ADSCrossRefGoogle Scholar
  31. 31.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics Non-relativistic Theory, 3rd edn., vol. 3 (Butterworth-Heinemann, Oxford, 1981) Google Scholar
  32. 32.
    W.H. Press, B.P. Flannery, S.A. Teukolski, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992) Google Scholar
  33. 33.
    M. Girardeau, R. Arnowitt, Phys. Rev. 113, 755 (1959) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Centro de Ciências Naturais e HumanaUniversidade Federal do ABCSanto AndréBrazil

Personalised recommendations