Skip to main content
Log in

The Gaussian Approximation to Homogeneous Bose Gas

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study low-lying excitations of a spinless homogeneous Bose gas with repulsive interaction at zero temperature in terms of the Gaussian mean field approximation. The dynamical equations of this approximation have been derived for small displacements from the static Hartree-Fock-Bogoliubov solution. We obtain a gapped continuous band of excitations above a discrete branch with phonon behavior at long wavelength regime. We also discuss the available forms of excitations and conclude that there are constraints on the first order deviations of the Gaussian approximation parameters and they are generated by an infinitesimal unitary transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.H. Anderson, J.R. Ensher, M.R. Mathews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  2. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  3. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.D. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  4. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  5. P.A. Ruprecht, M. Edwards, K. Burnett, C.W. Clark, Phys. Rev. A 54, 4178 (1996)

    Article  ADS  Google Scholar 

  6. M. Edwards, P.A. Ruprecht, K. Burnett, R.J. Dodd, C.W. Clark, Phys. Rev. Lett. 77, 1671 (1996)

    Article  ADS  Google Scholar 

  7. D.A.W. Hutchinson, E. Zaremba, A. Griffin, Phys. Rev. Lett. 78, 1842 (1997)

    Article  ADS  Google Scholar 

  8. R.J. Dodd, M. Edwards, C.W. Clark, K. Burnett, Phys. Rev. A 57, R32 (1998)

    Article  ADS  Google Scholar 

  9. J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, 1986)

    Google Scholar 

  10. J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  MATH  Google Scholar 

  11. H. Shi, A. Griffin, Phys. Rep. 304(1) (1998)

  12. S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000)

    Article  ADS  Google Scholar 

  13. M.O.C. Pires, E.J.V. Passos, Phys. Rev. A 77, 033606 (2008)

    Article  ADS  Google Scholar 

  14. A. Griffin, Excitations in a Bose-Condensed Liquid (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  15. A. Griffin, Phys. Rev. B 53, 9341 (1996)

    Article  ADS  Google Scholar 

  16. P.C. Hohenberg, P.C. Martin, Ann. Phys. 34, 291 (1965)

    Article  ADS  Google Scholar 

  17. L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, 3rd edn., vol. 5 (Butterworth-Heinemann, Oxford, 1980)

    Google Scholar 

  18. M.R. Andrews, D.M. Kurn, H.-J. Miesner, D.S. Durfee, C.G. Townsend, S. Inouye, W. Ketterle, Phys. Rev. Lett. 79, 553 (1997)

    Article  ADS  Google Scholar 

  19. N.M. Proukakis, K. Burnett, H.T.C. Stoof, Phys. Rev. A 57, 1230 (1998)

    Article  ADS  Google Scholar 

  20. F. Takano, Phys. Rev. 123, 699 (1961)

    Article  ADS  Google Scholar 

  21. D.W.A. Hutchinson, K. Burnett, R.J. Dodd, S.A. Morgan, M. Rusch, E. Zaremba, N.P. Proukakis, M. Edwards, C.W. Clark, J. Phys. B 33, 3825 (2000)

    Article  ADS  Google Scholar 

  22. P. Tommasini, E.J.V. Passos, M.O.C. Pires, A.F.R. de Toledo Piza, J. Phys. Condens. Matter 17, 3165 (2005)

    Article  ADS  Google Scholar 

  23. A.K. Kerman, P. Tommasini, Ann. Phys. 260, 250 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. L.C.Y. Yong, A.F.R. de Toledo Piza, Phys. Rev. D 46, 742 (1992)

    Article  ADS  Google Scholar 

  25. P. Tommasini, A.F.R. de Toledo Piza, Ann. Phys. 253, 198 (1997)

    Article  ADS  MATH  Google Scholar 

  26. A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems (Dover, New York, 2003)

    Google Scholar 

  27. S. Giorgini, Phys. Rev. A 57, 2949 (1998)

    Article  ADS  Google Scholar 

  28. P. Tommasini, E.J.V. Passos, A.F.R. de Toledo Piza, M.S. Hussein, Phys. Rev. A 67, 023606 (2003)

    Article  ADS  Google Scholar 

  29. A.K. Kerman, P. Tommasini, Ann. Phys. 260, 250 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. A.K. Kerman, P. Tommasini, Phys. Rev. B 56, 14733 (1997)

    Article  ADS  Google Scholar 

  31. L.D. Landau, E.M. Lifshitz, Quantum Mechanics Non-relativistic Theory, 3rd edn., vol. 3 (Butterworth-Heinemann, Oxford, 1981)

    Google Scholar 

  32. W.H. Press, B.P. Flannery, S.A. Teukolski, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  33. M. Girardeau, R. Arnowitt, Phys. Rev. 113, 755 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. F. R. de Toledo Piza for introducing the subject as well as discussion. This work was supported by the FAPESP and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. C. Pires.

Appendix: The Definitions of the Dynamics Matrix

Appendix: The Definitions of the Dynamics Matrix

The definitions of the matrices necessary to the dynamics equations (given in (20) and (21)) of the generalized averages are given below. The matrix A(k,q) is given by

(62)

and the B(k,q) is

(63)

where c(k)=cosh(2σ k ) and s(k)=sinh(2σ k ). The matrix I has just the element I 11 different from zero and equal to 1. The matrix that couple the excitations to the condensate, C(k,q), is given by

$$ C(\mathbf{ k}, \mathbf{q})=\frac{\rho_{0}}{2} \biggl(v \biggl(\biggl\lvert \mathbf{k}+\frac{\mathbf{q}}{2} \biggr\rvert \biggr) C^+(\mathbf{ k},\mathbf{ q})+v \biggl(\biggl \vert \mathbf{k}-\frac{\mathbf{q}}{2} \biggr \vert \biggr) C^{-}(\mathbf{k},\mathbf{ q})+2 v(q) C^3(\mathbf{ k}, \mathbf{q}) \biggr) $$
(64)

where

(65)
(66)

and

(67)

The notation used to C ±(k,q) was choice just to make the superscript sign of C ±(k,q) coincides with the sign of \(v (\lvert \mathbf{k}\pm\frac{\mathbf{q}}{2}\rvert )\).

Finally the matrices G(q) and L(k,q) are given by

$$ G({q})=\left(\begin{array}{c@{\quad}c} 0 & \varDelta({q})-\varLambda({q})\\[3pt] \varDelta({q})+\varLambda({q}) & 0 \end{array}\right), $$
(68)

and

(69)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paolini, F., Pires, M.O.C. The Gaussian Approximation to Homogeneous Bose Gas. J Low Temp Phys 171, 87–106 (2013). https://doi.org/10.1007/s10909-012-0833-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0833-y

Keywords

Navigation