Skip to main content
Log in

Extended formulations for convex envelopes

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this work we derive explicit descriptions for the convex envelope of nonlinear functions that are component-wise concave on a subset of the variables and convex on the other variables. These functions account for more than 30 % of all nonlinearities in common benchmark libraries. To overcome the combinatorial difficulties in deriving the convex envelope description given by the component-wise concave part of the functions, we consider an extended formulation of the convex envelope based on the Reformulation–Linearization-Technique introduced by Sherali and Adams (SIAM J Discret Math 3(3):411–430, 1990). Computational results are reported showing that the extended formulation strategy is a useful tool in global optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Article  Google Scholar 

  2. Adams, W.P., Sherali, H.D.: A hierarchy of relaxations leading to the convex hull representation for general discrete optimization problems. Ann. Oper. Res. 140(1), 21–47 (2005)

    Article  Google Scholar 

  3. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. 124, 33–43 (2010)

    Article  Google Scholar 

  4. Ballerstein, M., Michaels, D.: Convex underestimation of edge-concave functions by a simultaneous convexification with multi-linear monomials. In: Alonse, D., Hansen, P., Rocha, C. (eds.) Proceedings of the Global Optimization Workshop, pp. 35–38 (2012). Available at http://www.hpca.ual.es/leo/gow/2012-XI-GOW.pdf

  5. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs. Optim. Methods Softw. 24(4–5), 485–504 (2009)

    Article  Google Scholar 

  6. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    Article  Google Scholar 

  7. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (special issue: Global Optimization) (2009)

  8. Burer, S., Letchford, A.: On non-convex quadratic programming with box constraints. SIAM J. Optim. 20, 1073–1089 (2009)

    Article  Google Scholar 

  9. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)

    Article  Google Scholar 

  10. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. J. Glob. Optim. 47(4), 661–685 (2010)

    Article  Google Scholar 

  11. GLOBAL Library: http://www.gamsworld.org/global/globallib.htm

  12. Huggins, P., Sturmfels, B., Yu, J., Yuster, D.: The hyperdeterminant and triangulations of the 4-cube. Math. Comput. 77, 1653–1679 (2008)

    Article  Google Scholar 

  13. IBM: ILOG CPLEX: http://www.ibm.com/software/integration/optimization/cplex (2009–2012)

  14. Jach, M., Michaels, D., Weismantel, R.: The convex envelope of (\(n\)-1)-convex functions. SIAM J. Optim. 19(3), 1451–1466 (2008)

    Article  Google Scholar 

  15. Khajavirad, A., Sahidinidis, N.V.: Convex envelopes of products of convex and component-wise concave functions. J. Glob. Optim. 52, 391–409 (2012)

    Article  Google Scholar 

  16. Khajavirad, A., Sahinidis, N.V.: Convex envelopes generated from finitely many compact convex sets. Math. Program. Ser. A 137, 371–408 (2013)

    Article  Google Scholar 

  17. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

    Article  Google Scholar 

  18. Lavor, C.: On generating instances for the molecular distance geometry problem. In: Liberti, L., Maculan, N. (eds.) Global Optimization. From Theory to Implementation, pp. 405–414. Springer, Berlin (2006)

  19. Lavor, C., Liberti, L., Maculan, N.: Molecular distance geometry problem. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 2304–2311. Springer, Berlin (2009)

  20. Locatelli, M.: Convex Envelopes for Quadratic and Polynomial Functions Over Polytopes (manuscript, 11 Mar 2010). Available at http://www.optimization-online.org/DB_FILE/2010/11/2788.pdf (2010)

  21. Locatelli, M., Schoen, F.: On the Convex Envelopes and Underestimators For Bivariate Functions (manuscript, 17 Nov 2009). Available at http://www.optimization-online.org/DB_FILE/2009/11/2462.pdf (2009)

  22. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs. I: convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  Google Scholar 

  23. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103, 207–224 (2005)

    Article  Google Scholar 

  24. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1970)

  25. SCIP: Solving Constraint Integer Programs (2009). Available at http://scip.zib.de

  26. Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special sets. Acta Math. Vietnam. 22(1), 245–270 (1997)

    Google Scholar 

  27. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero–one programming problems. SIAM J. Discret. Math. 3(3), 411–430 (1990)

    Article  Google Scholar 

  28. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations and convex hull characterizations for mixed-integer zero–one programming problems. Discret. Appl. Math. 52(1), 83–106 (1994)

    Article  Google Scholar 

  29. Sherali, H.D., Dalkiran, E., Desai, J.: Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts. Comput. Optim. Appl. 52, 483–506 (2012)

    Article  Google Scholar 

  30. Sherali, H.D., Dalkiran, E., Liberti, L.: Reduced RLT representations for nonconvex polynomial programming problems. J. Glob. Optim. 52(3), 447–469 (2012)

    Article  Google Scholar 

  31. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a reformulation–linearization technique. J. Glob. Optim. 2, 101–112 (1992)

    Article  Google Scholar 

  32. Tardella, F.: On the existence of polyedral convex envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 563–573. Kluwer, Dordrecht (2003)

  33. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008)

    Article  Google Scholar 

  34. Tawarmalani, M.: Inclusion Certificates and Simultaneous Convexification of Functions (manuscript, 5 Sept 2010). Available at http://www.optimization-online.org/DB_FILE/2010/09/2722.pdf (2010)

  35. Tawarmalani, M., Richard, J.P.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. Ser. A 138(1–2), 531–577 (2013)

    Article  Google Scholar 

  36. Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20, 137–158 (2001)

    Article  Google Scholar 

  37. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math. Program. 93, 247–263 (2002)

    Article  Google Scholar 

  38. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  Google Scholar 

  39. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  Google Scholar 

  40. Wolfram Research: Mathematica. Wolfram Research, Champaign (2008)

Download references

Acknowledgments

This work is part of the Collaborative Research Centre “Integrated Chemical Processes in Liquid Multiphase Systems” (CRC/Transregio 63 “InPROMPT”) funded by the German Research Foundation (DFG). Main parts of this work have been finished while the second author was at the Institute for Operations Research at ETH Zurich and financially supported by DFG through the CRC/Transregio 63. The authors thank the DFG for its financial support. We would like to thank Jon Lee for providing the Lavor test instances used in this paper. We are grateful to Stefan Vigerske for his continued support for SCIP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ballerstein.

Appendix

Appendix

The following elementary lemma shows that the facets of \(\mathcal S _{\scriptscriptstyle {[l,u]}}^{\scriptscriptstyle \;(n)}\) and \(\mathcal L _{\scriptscriptstyle {[l,u]}}^{\scriptscriptstyle \;(n_x,n_y)}\) are also facets of \(\mathcal U _{f}\) and \(\mathcal E _{f}\), respectively.

Lemma 2

Let \(h,g_i:D\subseteq \mathbf R ^n\rightarrow \mathbf R ,\,i=1,\ldots ,m\), be continuous functions over a convex, compact domain \(D\subseteq \mathbf R ^n\), and let \(g:D\subseteq \mathbf R ^n\rightarrow \mathbf R ^m\) be the vector-valued function given by \(g(x):=\big (g_1(x),\ldots ,g_m(x)\big )^\top \). Furthermore, consider the two convex sets \(\mathcal{L }:={{\mathrm{conv}}}(\{(x,\zeta )\in \mathbf R ^{n+m}\mid \zeta = g(x),\; x\in D\})\) and \(\mathcal{U }:= {{\mathrm{conv}}}(\{(x,\zeta ,\mu )\in \mathbf R ^{n+m+1}\mid \zeta = g(x),\;\mu \ge h(x),\; x\in D \})\). Then, each facet-defining inequality of \(\mathcal L \) also induces a facet for \(\mathcal{U }\).

Proof

Let \(a^\top x + b^\top \zeta \le \gamma \) be an arbitrary facet-defining inequality for \(\mathcal{L }\) with \(a\in \mathbf R ^n, b\in \mathbf R ^m,\) and \(\gamma \in \mathbf R \). Then, \(a^\top x + b^\top \zeta \le \gamma \) is valid for \(\mathcal{U }\). As \(a^\top x + b^\top \zeta \le \gamma \) is facet-defining for \(\mathcal L \), there are \(n+m\) points \(x^r\in D\) such that the points \(\big (x^r,g(x^r)\big ),\,r=1,\ldots ,n+m\), are affinely independent and each point satisfies \(a^\top x+ b^\top \zeta \le \gamma \) with equality. Now, consider the set of points \((x^r,\zeta ^r,\mu ^r):=\big (x^r,g(x^r),h(x^r)\big )\in \mathcal{U },\,r=1,\ldots ,n+m\), and the point \((x^{n+m+1},\zeta ^{n+m+1},\mu ^{n+m+1}):= \big (x^1, g(x^1),h(x^1)+1\big )\). Then, \(a^\top x^r +b^\top \zeta ^r=\gamma \) holds for all \(r=1,\ldots ,n+m+1\). Furthermore, the points \((x^r,\zeta ^r,\mu ^r),\,r=1,\ldots ,n+m+1\) are affinely independent since the set \(\{(x^r,\zeta ^r)-(x^1,\zeta ^1)\mid r=2,\ldots , n+m+1\}\) is linearly independent. \(\square \)

The next lemma gives the key argument to derive the extended formulations \(\mathcal U _{f}\) and \(\mathcal E _{f}\) for functions \(f\) belonging to Classes 1 and 2. It deals with a slight modification of the equation systems underlying the works [2, 27, 28] by Sherali and Adams to derive equivalent extended linear formulations for certain polynomial mixed-discrete programs. We adapt their proofs to our setting. For \(V_1=\emptyset \), the statement of Lemma 3 follows from the fact that the convex hull of \(\{F^{n_x+1}(v,y) \mid (v,y)\in {{\mathrm{vert}}}([l^x,u^x]\times [l^y,u^y])\}\) equals \(\mathcal S _{\scriptscriptstyle {[l^x,u^x]\times [l^y,u^y]}}^{\scriptscriptstyle \;(n_x+1)}\). The special case when \(V_2=\emptyset \) is discussed in Adams and Sherali [2].

Lemma 3

Let \([l,u]:=[l^x,u^x]\times [l^y,u^y]\subseteq \mathbf R ^{n_x}\times \mathbf R \) be a full-dimensional box, \(N_x:=\{1,\ldots ,n_x\},\,V_x:={{\mathrm{vert}}}([l^x,u^x])\) and \(n:=n_x+1\). Moreover, let \(V_1,V_2\subseteq V_x \) be a partition of \(V_x\), i.e., \(V_x=V_1\cup V_2,\,V_1\cap V_2=\emptyset \). For a given \(z\in \mathbf R ^{2^{n}-1}\), consider the following nonlinear system in the variables \(\lambda _v,\,y^v\) with \(v\in V_1\), and \(\lambda _{v,l},\,\lambda _{v,u}\) with \(v\in V_2\):

$$\begin{aligned} z_J&= \sum _{v\in V_{1}}{\lambda _v F^{\scriptscriptstyle {(n_x)}}_J(v)}+\sum _{v\in V_{2}}{\left( \lambda _{v,l}F^{\scriptscriptstyle {(n_x)}}_J(v)+\lambda _{v,u} F^{\scriptscriptstyle {(n_x)}}_J(v)\right) },\end{aligned}$$
(16)
$$\begin{aligned} z_{J\cup \{n\}}&= \sum _{v\in V_{1}}{\lambda _v y^v F^{\scriptscriptstyle {(n_x)}}_J(v)} +\sum _{v\in V_{2}}{\left( \lambda _{v,l} l^yF^{\scriptscriptstyle {(n_x)}}_J(v)+\lambda _{v,u} u^y F^{\scriptscriptstyle {(n_x)}}_J(v)\right) }, \end{aligned}$$
(17)

for all \(J\subseteq N_x\). Its solution is given by

$$\begin{aligned} \lambda _{v}=\frac{e_{\hat{v}}(z^x)}{\prod _{j=1}^{n_x} (u_j-l_j)}, \quad y^v=\frac{\sum _{J\subseteq N_x} (-1)^{|J|+\alpha (\hat{v})}\; F^{\scriptscriptstyle {(n_x)}}_{N_x\setminus J}(\hat{v}) z_{J\cup \{n\}}}{e_{\hat{v}}(z^x)}, \end{aligned}$$
(18)

for \(v\in V_1\), where \(\hat{v}\) denotes the vector opposite to \(v\) in \([l^x,u^x],\,z^x\) denotes the subvector of \(z\)-variables with entries \(z_J,\,\emptyset \ne J\subseteq N_x\), and \(e_{\hat{v}}(z^x)\) according to Eq. (6). The solution of \(\lambda _{v,l}\) and \(\lambda _{v,u}\) with \(v\in V_{2}\) reads

$$\begin{aligned} \lambda _{v,l}=\frac{e_{(\hat{v},u^y)}(z)}{\prod _{j=1}^{n} (u_j-l_j)} \quad {\mathrm{and}}\quad \lambda _{v,u}=\frac{e_{(\hat{v},l^y)}(z)}{\prod _{j=1}^{n} (u_j-l_j)}. \end{aligned}$$
(19)

Proof

We prove Lemma 3 in two steps. Initially, we consider subsystem (I) defined by Eq. (16) and subsystem (II) defined by Eq. (17) for all \(J\subseteq N_x\) independently. Afterwards we combine the solutions of the two subsystems.

Let \(T\) be the matrix whose columns are given by the vectors \((1,F^{\scriptscriptstyle {(n_x)}}(v)),\,v\in V\). We can then bring both subsystems into the form \(\zeta =T\xi \). This system has the unique solution (see [2, 17, 27])

$$\begin{aligned} \xi _v\;=\; \frac{e_{\hat{v}}(\zeta )}{\prod _{j=1}^{n_x}(u_j-l_j)},\qquad v\in V. \end{aligned}$$

For subsystem (I) we replace \(\left( \lambda _{v,l} F^{\scriptscriptstyle {(n_x)}}_J(v)+\lambda _{v,u} F^{\scriptscriptstyle {(n_x)}}_J(v)\right) \) by \((\lambda _vF^{\scriptscriptstyle {(n_x)}}_J(v))\) in Eq. (16). Hence, we obtain the system \((1,z^x)=T\lambda \) with unique solution

$$\begin{aligned} \lambda _v\;=\; \frac{e_{\hat{v}}(z^x)}{\prod _{j=1}^{n_x}(u_j-l_j)},\quad v\in V. \end{aligned}$$

For subsystem (II) we first substitute

$$\begin{aligned} \left( \lambda _{v,l} l_nF^{\scriptscriptstyle {(n_x)}}_J(v)+\lambda _{v,u} u_n F^{\scriptscriptstyle {(n_x)}}_J(v)\right) {\mathrm{\quad by\quad }} \left( \lambda _{v}y^vF^{\scriptscriptstyle {(n_x)}}_J(v)\right) \end{aligned}$$

in Eq. (17) and afterwards, \(\lambda _{v}y^v\) by \(r_v\). With \(\zeta _J=z_{J\cup \{n\}}\) for all \(J\subseteq N_x\), subsystem (II) is of the form \(\zeta =Tr\) with unique solution \(r_v=e_{\hat{v}}(\zeta )/\prod _{j=1}^{n_x}(u_j-l_j),\,v\in V\).

Finally, we consider the original system, where \(r_v=\lambda _vy^v,\,v\in V_1\), and \(r_v=\lambda _{v,l}l^y+\lambda _{v,u}u^y,\,\lambda _v=\lambda _{v,l}+\lambda _{v,u},\,v\in V_2\). To obtain \(y^v,\,v\in V_1\), we can solve \(r_v=\lambda _vy^v\) for \(y^v\) if \(\lambda _v\ne 0\). Then, \(y^v=r_v/\lambda _v=e_{\hat{v}}(\zeta )/e_{\hat{v}}(z^x)\). If \(\lambda _v=0,\,y^v\) can take any value as its corresponding summand cancels out.

To derive \(\lambda _{v,l}\) and \(\lambda _{v,u},\,v\in V_{2}\), we solve the linear system \(\lambda _v y^v=\lambda _{v,l} l^y+\lambda _{v,u} u^y\) and \(\lambda _v=\lambda _{v,l}+\lambda _{v,u}\). Then, \(\lambda _{v,l}=\lambda _v(u^y-y^v)/(u^y-l^y)\) and \(\lambda _{v,u}=\lambda _v(y^v-l^y)/(u^y-l^y)\).

We prove the formula for \(\lambda _{v,l}\) in Eq. (19). An analogous argument holds for \(\lambda _{v,u}\). We get \(\lambda _{v,l}=\lambda _v(u^y-y^v)/(u^y-l^y)=e_{\hat{v}}(z^x)(u^y-y^v)/\prod _{j\in N}(u_i-l_i)\). To deduce Eq. (19), it is thus sufficient to show that \(e_{(\hat{v},u^y)}(z)=e_{\hat{v}}(z^x)(u^y- y^v)\). This follows because \(e_{(\hat{v},u^y)}(z)\) can be rewritten as

$$\begin{aligned}&\sum _{J\subseteq N}{(-1)^{|J|+\alpha (\hat{v})} F^{\scriptscriptstyle {(n)}}_{N\setminus J}(\hat{v},u^y)z_J}\\&\quad =\sum _{J\subseteq N_x}{(-1)^{|J|+\alpha (\hat{v})} F^{\scriptscriptstyle {(n)}}_{N\setminus J}(\hat{v},u^y)z_J}\\&\quad \quad + \sum _{J=T\cup \{n\}:T\subseteq N_x}{(-1)^{|J|+\alpha (\hat{v})} F^{\scriptscriptstyle {(n)}}_{N\setminus J}(\hat{v})z_{J}}\\&\quad =\sum _{J\subseteq N_x}{(-1)^{|J|+\alpha (\hat{v})} u^yF^{\scriptscriptstyle {(n_x)}}_{N_x\setminus J}(\hat{v})z_J}+ \sum _{J\subseteq N_x}{(-1)^{|J|+\alpha (\hat{v})+1} F^{\scriptscriptstyle {(n_x)}}_{N_x\setminus J}(\hat{v})z_{J\cup \{n\}}}\\&\quad =\; u^y e_{\hat{v}}(z^x)-y^v e_{\hat{v}}(z^x)=e_{\hat{v}}(z^x)(u^y- y^v). \end{aligned}$$

This concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballerstein, M., Michaels, D. Extended formulations for convex envelopes. J Glob Optim 60, 217–238 (2014). https://doi.org/10.1007/s10898-013-0104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-013-0104-8

Keywords

Navigation