Skip to main content
Log in

On the Determining Wavenumber for the Nonautonomous Subcritical SQG Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

A time-dependent determining wavenumber was introduced in Cheskidov and Dai (Phys D Nonlinear Phenom 376–377:204–215, 2018) to estimate the number of determining modes for the surface quasi-geostrophic equation. In this paper we continue this investigation focusing on the subcritical case and study trajectories inside an absorbing set bounded in \(L^\infty \). Utilizing this bound we find a time-independent determining wavenumber that improves the estimate obtained in Cheskidov and Dai (Phys D Nonlinear Phenom 376–377:204–215, 2018). This classical approach is more direct, but it is contingent on the existence of the \(L^\infty \) absorbing set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehrender Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  2. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171(3), 1903–1930 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Chen, Q., Miao, C., Zhang, Z.: A new Bernstein inequality and the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 271, 821–838 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Cheskidov, A.: Global attractors of evolutionary systems. J. Dyn. Differ. Equ. 21, 249–268 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Cheskidov, A., Dai, M.: Determining modes for the surface quasi-geostrophic equation. Phys. D Nonlinear Phenom. 376–377, 204–215 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Cheskidov, A., Dai, M.: The existence of a global attractor for the forced critical surface quasi-geostrophic equation in \(L^2\). J. Math. Fluid Mech. 20(1), 213–225 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Cheskidov, A., Dai, M., Kavlie, L.: Determining modes for the 3D Navier–Stokes equations. Phys. D Nonlinear Phenom. 374–375, 1–9 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Cheskidov, A., Kavlie, L.: Pullback attractors for generalized evolutionary systems. Discrete Contin. Dyn. Syst. B 20, 749–779 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Constantin, P., Zelati, M.C., Vicol, V.: Uniformly attracting limit sets for the critically dissipative SQG equation. Nonlinearity 29(2), 298 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Constantin, P., Foias, C., Manley, O.P., Temam, R.: Determining modes and fractal dimension of turbulent flows. J. Fluid Mech. 150, 427–440 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Constantin, P., Foias, C., Temam, R.: On the dimension of the attractors in two-dimensional turbulence. Physica D 30, 284–296 (1988)

    MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Majda, A.J., Tabak, E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7(6), 1495–1533 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22(5), 1289–1321 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Foias, C., Jolly, M., Kravchenko, R., Titi, E.: A determining form for the 2D Navier–Stokes equations—the Fourier modes case. J. Math. Phys. 53(11), 115623 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Foias, C., Jolly, M., Kravchenko, R., Titi, E.: A unified approach to determining forms for the 2D Navier–Stokes equations—the general interpolants case. Russ. Math. Surv. 69, 359 (2014)

    MATH  Google Scholar 

  17. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications, vol. 83. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  18. Foias, C., Manley, O.P., Temam, R., Tréve, Y.M.: Asymptotic analysis of the Navier–Stokes equations. Physica D 9(1–2), 157–188 (1983)

    MathSciNet  MATH  Google Scholar 

  19. Foias, C., Prodi, G.: Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39, 1–34 (1967)

    MathSciNet  MATH  Google Scholar 

  20. Foias, C., Temam, R.: Some analytic and geometric properties of the solutions of the Navier–Stokes equations. J. Math. Pures Appl. 58, 339–368 (1979)

    MathSciNet  MATH  Google Scholar 

  21. Foias, C., Titi, E.S.: Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity 4, 135–153 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Grafakos, L.: Modern Fourier analysis. Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2009)

    Google Scholar 

  23. Kiselev, A., Nazarov, F.: A variation on a theme of Caffarelli and Vasseur. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370(Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. (40):58–72, 220 (2009)

  24. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167(3), 445–453 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Resnick, S.: Dynamical Problems in Nonlinear Advective Partial Differential Equations. Ph.D. Thesis, University of Chicago (1995)

Download references

Acknowledgements

The authors would wish to express their gratitude to the anonymous referee for the careful review and valuable suggestions which helped to improve the manuscript a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimi Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of A. Cheskidov was partially supported by NSF grants DMS–1108864 and DMS–1517583. The work of M. Dai was partially supported by NSF Grant DMS–1815069.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheskidov, A., Dai, M. On the Determining Wavenumber for the Nonautonomous Subcritical SQG Equation. J Dyn Diff Equat 32, 1511–1525 (2020). https://doi.org/10.1007/s10884-019-09794-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-019-09794-7

Keywords

Mathematics Subject Classification

Navigation