Skip to main content

Advertisement

Log in

Viscosity Solutions of Systems of Variational Inequalities with Interconnected Bilateral Obstacles of Non-Local Type

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study systems of nonlinear second-order variational inequalities with interconnected bilateral obstacles with non-local terms. They are of min–max and max–min types and related to a multiple modes zero-sum switching game in the jump-diffusion model. Using systems of penalized reflected backward SDEs with jumps and unilateral interconnected obstacles, and their associated deterministic functions, we construct for each system a continuous viscosity solution which is unique in the class of functions with polynomial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques and Applications, 17, Springer, Paris (1994)

  2. Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Int. J. Probab. Stoch. Process. 60(1–2), 57–83 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Annales de l’Institut Henri Poincaré, Non Linear Anal 25(3), 567–585 (2007)

    Article  MathSciNet  Google Scholar 

  4. Biswas, I.H., Jakobsen, E.R., Karlsen, K.H.: Viscosity solutions for a system of integro-PDEs and connections to optimal switching and control of jump-diffusion processes. Appl. Math. Optim. 62(1), 47–80 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chassagneux, J.F., Elie, R., Kharroubi, I.: A note on existence and uniqueness for solutions of multidimensional reflected BSDEs. Electron. Commun. Probab. 16, 120–128 (2011)

    Article  MathSciNet  Google Scholar 

  6. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  7. Dellacherie, C., Meyer, P.A.: Probabilités et Potentiel: Chapitres V à VIII. Hermann, Paris (1980)

    MATH  Google Scholar 

  8. Djehiche, B., Hamadene, S., Morlais, M.A.: Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles. Funkcialaj Ekvacioj 58(1), 135–175 (2015)

    Article  MathSciNet  Google Scholar 

  9. Djehiche, B., Hamadene, S., Morlais, M.-A., Zhao, X.: On the equality of solutions of max–min and min–max systems of variational inequalities with interconnected bilateral obstacles. J. Math. Anal. Appl. 452(1), 148–175 (2017)

    Article  MathSciNet  Google Scholar 

  10. Djehiche, B., Hamadene, S., Popier, A.: A finite horizon optimal multiple switching problem. SIAM J. Control Optim. 48(4), 2751–2770 (2009)

    Article  MathSciNet  Google Scholar 

  11. El Asri, B., Hamadene, S.: The finite horizon optimal multi-modes switching problem: the viscosity solution approach. Appl. Math. Optim. 60(2), 213–235 (2009)

    Article  MathSciNet  Google Scholar 

  12. Elie, R., Kharroubi, I.: Constrained backward SDEs with jumps: Application to optimal switching. Preprint (2009)

  13. Essaky, E.H.: Reflected backward stochastic differential equation with jumps and RCLL obstacle. Bulletin des Sciences Mathématiques 132(8), 690–710 (2008)

    Article  MathSciNet  Google Scholar 

  14. Fujiwara, T., Kunita, H.: Stochastic differential equations of jump type and Lévy processes in diffeomorphisms group. J. Math. Kyoto Univ. 25(1), 71–106 (1985)

    Article  MathSciNet  Google Scholar 

  15. Hamadene, S., Hdhiri, I.: The stopping and starting problem in the model with jumps. PAMM 7(1), 1081803–1081804 (2007)

    Article  Google Scholar 

  16. Hamadene, S., Jeanblanc, M.: On the starting and stopping problem: application in reversible investments. Math. Oper. Res. 32(1), 182–192 (2007)

    Article  MathSciNet  Google Scholar 

  17. Hamadene, S., Morlais, M.A.: Viscosity solutions of systems of PDEs with interconnected obstacles and switching problem. Appl. Math. Optim. 67(2), 163–196 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hamadene, S., Zhang, J.: Switching problem and related system of reflected backward SDEs. Stoch. Process. Appl. 120(4), 403–426 (2010)

    Article  MathSciNet  Google Scholar 

  19. Hamadène, S., Zhao, X.: Systems of integro-PDEs with interconnected obstacles and multi-modes switching problem driven by Lévy process. Nonlinear Differ. Equ. Appl. NoDEA 22(6), 1607–1660 (2015)

    Article  Google Scholar 

  20. Harraj, N., Ouknine, Y., Turpin, I.: Double barriers, reflected BSDEs with jumps and viscosity solutions of parabolic integro-differential PDEs. Int. J. Stoch. Anal. 2005(1), 37–53 (1900)

    MATH  Google Scholar 

  21. Hu, Y., Tang, S.: Multi-dimensional BSDE with oblique reflection and optimal switching. Probab. Theory Relat. Fields 147(1–2), 89–121 (2010)

    Article  MathSciNet  Google Scholar 

  22. Hu, Y., Tang, S.: Switching game of backward stochastic differential equations and associated system of obliquely reflected BSDEs. Discrete Contin. Dyn. Syst. 35(11), 5447–5465 (2013)

    Article  Google Scholar 

  23. Ishii, H., Koike, S.: Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games. Funkcialaj Ekvacioj 34, 143–155 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Lenhart, S.M., Yamada, N.: Viscosity solutions associated with switching game for piecewise-deterministic processes. Stoch. Int. J. Probab. Stoch. Process. 38(1), 27–47 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Pham, H., Vath, V.L., Zhou, X.Y.: Optimal switching over multiple regimes. SIAM J. Control Optim. 48(4), 2217–2253 (2009)

    Article  MathSciNet  Google Scholar 

  26. Tang, S., Hou, S.H.: Switching games of stochastic differential systems. SIAM J. Control Optim. 46(3), 900–929 (2007)

    Article  MathSciNet  Google Scholar 

  27. Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994)

    Article  MathSciNet  Google Scholar 

  28. Tang, S., Yong, J.: Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach. Stoch. Int. J. Probab. Stoch. Process 45(3–4), 145–176 (1993)

    MathSciNet  MATH  Google Scholar 

  29. Zhu, X.: Backward stochastic viability property with jumps and applications to the comparison theorem for multidimensional BSDEs with jumps. AIP Conf. Proc. 1200, 438–441 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuzhe Zhao.

Appendix: Alternative Definition of the Viscosity Solution of System (2.1)

Appendix: Alternative Definition of the Viscosity Solution of System (2.1)

The following result inspired by the work by Barles–Imbert [3] is another definition of the viscosity solution of system (2.1). We do not give its proof since it is an adaptation of the one given in ([19], Proposition 5.2, pp. 1656) as the function \(q\longmapsto g^{ij}(t,x,\vec {y},z,q)\) is non-decreasing, \(\beta \) is a bounded function, \(\gamma ^{ij}\) is non-negative which then imply \(I_{ij}(t,x,\phi )\le I_{ij}(t,x,\psi )\), \( I_{ij}^{1,\delta }(t,x,\phi )\le I_{ij}^{1,\delta }(t,x,\psi )\) and \(I_{ij}^{2,\delta }(t,x,\phi )\le I_{ij}^{2,\delta }(t,x,\psi )\) for any \(\phi \le \psi \) such that \(\phi (t,x)=\psi (t,x)=u^{ij}(t,x)\) (\(\delta >0\) and \((i,j)\in \Gamma \) are fixed).

Proposition 4.6

A function \(\vec {u}=(u^{ij}(t,x))_{(i,j)\in \Gamma }\,\,:[0,T]\times \mathbf{R}^k \rightarrow \mathbf{R}^{m_1\times m_2}\) such that for any \((i,j)\in \Gamma \), \(u^{ij}\in \Pi _g\) is lsc (resp. usc) is a viscosity supersolution (resp. subsolution) of (2.1) if:

  1. (i)

    \( v^{ij}(T,x_0)\ge \,\, (resp. \le ) \,\, h^{ij}(x_0)\), \(\forall x_0\in \mathbf{R}^k\) ;

  2. (ii)

    For any \((t_0,x_0)\in (0,T)\times \mathbf{R}^k\), \(\delta \in (0,1)\) and a function \(\phi \in \mathcal{C}^{1,2}([0,T]\times \mathbf{R}^k)\) such that \(u^{ij}(t_0,x_0)=\phi (t_0,x_0)\) and \(u^{ij}-\phi \) has a global minimum (resp. maximum) at \((t_0,x_0)\) on \((0,T)\times B(x_0,\delta K_\beta )\) where \(K_\beta \) is the bound of \(\beta \) (see the first inequality of (A0)-(ii)), we have:

    $$\begin{aligned} \left\{ \begin{array}{ll} \min \{(u^{ij}-L^{ij}[\vec {u}])(t_0,x_0); \max \{(u^{ij}-U^{ij}[\vec {u}])(t_0,x_0);\\ -\,\partial _t\phi (t_0,x_0)-b(t_0,x_0)^{\top } D_x\phi (t_0,x_0)-\frac{1}{2}\text{ Tr }(\sigma \sigma ^\top (t_0,x_0)D^2_{xx}\phi (t_0,x_0))\\ \quad \,-\,I^1_\delta (t_0,x_0,\phi )-I^2_\delta (t_0,x_0,D_x\phi ,u^{ij})\\ -\,g^{ij}(t_0,x_0,(u^{kl}(t_0,x_0))_{(k,l)\in A^1\times A^2},\sigma (t_0,x_0)^\top D_x\phi (t_0,x_0),I^{1,\delta }_{ij}(t_0,x_0,\phi )\\ \quad \, +\,I^{2,\delta }_{ij}(t_0,x_0,u^{ij}))\}\}\ge (resp. \le )\,0. \end{array} \right. \end{aligned}$$

Remark 4.2

In taking \(\bar{g}_{jl}\equiv +\infty \) (resp. \(\underline{g}_{ik}\equiv +\infty \)) for any \(j,l\in A_2\) (resp. \(i,k\in A_1\)) we obtain an alternative definition of the viscosity solution of the system of variational inequalities with interconnected lower (resp. upper) obstacles. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamadène, S., Zhao, X. Viscosity Solutions of Systems of Variational Inequalities with Interconnected Bilateral Obstacles of Non-Local Type. J Dyn Diff Equat 30, 1731–1756 (2018). https://doi.org/10.1007/s10884-017-9623-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9623-1

Keywords

Mathematics Subject Classification

Navigation