Skip to main content
Log in

Stability of Viscous Weak Detonation Waves for Majda’s Model

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Continuing the program initiated by Humpherys et al. (Physica D 259:63–80, 2013) for strong detonation waves, we use a combination of analytical and numerical Evans-function techniques to analyze the spectral stability of weak detonation waves in a simplified model for gas-dynamical combustion. Combining these new spectral stability results with the pointwise Green function analysis of Lyng et al. (J Differ Equ 233(2):654–698, 2007), we conclude that these waves are nonlinearly stable. The principal novelty of this analysis is the treatment of weak detonation waves. In contrast to the case of strong detonation waves, weak detonation waves are under compressive and the stability of these waves is delicate and has not been treated by standard weighted-norm techniques. The present analysis thus provides a case study illustrating the flexibility and power of the Evans-function-based approach to stability. As in the case of strong detonations, we find that all tested waves are spectrally stable, hence nonlinearly stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The CJ detonation is sonic behind the front.

  2. In the introduction of [18] there is a careful description of a number of the many variations of the Majda model (scalar balance law coupled to reaction equation) that have appeared in the literature since Majda’s original paper. We call all of these models, “Majda models.”

  3. The precise form of \(L\) can be seen in (3.1).

References

  1. Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  Google Scholar 

  2. Alexander, J.C., Sachs, R.: Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation. Nonlinear World 2(4), 471–507 (1995)

    MathSciNet  Google Scholar 

  3. Barker, B., Humpherys, J., Zumbrun, K.: STABLAB: A MATLAB-Based Numerical Library for Evans Function Computation (2009)

  4. Barker, B., Humpherys, J., Lyng, G., Zumbrun, K.: Viscous hyperstabilization of detonation waves in one space dimension (2013). preprint, arXiv:1311.6417

  5. Barker, B., Zumbrun, K.: A Numerical stability investigation of strong ZND detonations for Majda’s model (2010), preprint. arXiv:1011.1561v1

  6. Beyn, W.-J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10(3), 379–405 (1990)

    Article  MathSciNet  Google Scholar 

  7. Bridges, T.J., Derks, G., Gottwald, G.: Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Physica D 172(1–4), 190–216 (2002)

    Article  MathSciNet  Google Scholar 

  8. Brin, L.Q.: Numerical testing of the stability of viscous shock waves. Math. Comput. 70(235), 1071–1088 (2001)

    Article  MathSciNet  Google Scholar 

  9. Brin, L.Q., Zumbrun, K.: Analytically varying eigenvectors and the stability of viscous shock waves, Mat. Contemp. 22 (2002), 19–32. Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001)

  10. Courant, R., Friedrichs, K.O.: Supersonic ow and shock waves, Springer-Verlag, New York (1976). Reprinting of the 1948 original; Applied Mathematical Sciences, Vol. 21

  11. Evans, J.W., Feroe, J.A.: Traveling waves of infinitely many pulses in nerve equations. Math. Biosci. 37, 23–50 (1977)

    Article  Google Scholar 

  12. Faria, L.M., Kasimov, A.R., Rosales, R.R.: Theory of weakly nonlinear self sustained detonations (2014), preprint. arXiv:1407.8466

  13. Fickett, Wildon: Detonation in miniature. Am. J. Phys. 47(12), 1050–1059 (1979)

    Article  Google Scholar 

  14. Fickett, W., Davis, W.: Detonation: Theory and Experiment, Dover (2000). corrected reprint of 1979 UC Berkeley Edition

  15. Gardner, R.A., Zumbrun, K.: The gap lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51(7), 797–855 (1998)

    Article  MathSciNet  Google Scholar 

  16. Gasser, I., Szmolyan, P.: A geometric singular perturbation analysis of detonation and de agration waves. SIAM J. Math. Anal. 24(4), 968–986 (1993)

    Article  MathSciNet  Google Scholar 

  17. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley Classics Library, Wiley, New York (1988)

    Google Scholar 

  18. Humpherys, Jeffrey, Lyng, Gregory, Zumbrun, Kevin: Stability of viscous detonations for Majda’s model. Physica D 259, 63–80 (2013)

    Article  MathSciNet  Google Scholar 

  19. Humpherys, J., Sandstede, B., Zumbrun, K.: Effcient computation of analytic bases in Evans function analysis of large systems. Numer. Math. 103(4), 631–642 (2006)

    Article  MathSciNet  Google Scholar 

  20. Humpherys, J., Zumbrun, K.: An effcient shooting algorithm for Evans function calculations in large systems. Physica D 220(2), 116–126 (2006)

    Article  MathSciNet  Google Scholar 

  21. Kato, T.: Perturbation theory for linear operators, classics in mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

    Google Scholar 

  22. Liu, T.-P., Yu, S.-H.: Nonlinear stability of weak detonation waves for a combustion model. Commun. Math. Phys. 204(3), 551–586 (1999)

    Article  Google Scholar 

  23. Lyng, G., Raoofi, M., Texier, B., Zumbrun, K.: Pointwise Green function bounds and stability of combustion waves. J. Differ. Equ. 233(2), 654–698 (2007)

    Article  MathSciNet  Google Scholar 

  24. Lyng, G., Zumbrun, K.: A stability index for detonation waves in Majda’s model for reacting ow. Physica D 194(1–2), 1–29 (2004)

    Article  MathSciNet  Google Scholar 

  25. Majda, A.: A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41(1), 70–93 (1981)

    Article  MathSciNet  Google Scholar 

  26. Pego, R.L., Smereka, P., Weinstein, M.I.: Oscillatory instability of traveling waves for a KdV-Burgers equation. Physica D 67(1–3), 45–65 (1993)

    Article  MathSciNet  Google Scholar 

  27. Pego, R.L., Weinstein, M.I.: Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy. Soc. London Ser. A 340(1656), 47–94 (1992)

    Article  MathSciNet  Google Scholar 

  28. Radulescu, M.I., Tang, J.: Nonlinear dynamics of self-sustained supersonic reaction waves: Fickett’s detonation analogue. Phys. Rev. Lett. 107(16), 164503 (2011)

    Article  Google Scholar 

  29. Rosales, R.R., Majda, A.: Weakly nonlinear detonation waves. SIAM J. Appl. Math. 43(5), 1086–1118 (1983)

    Article  MathSciNet  Google Scholar 

  30. Sandstede, B.: Stability of Travelling Waves, Handbook of Dynamical Systems, vol. 2. North-Holland, Amsterdam (2002). pp. 983–1055

    Google Scholar 

  31. Szepessy, A.: Dynamics and stability of a weak detonation wave. Commun. Math. Phys. 202(3), 547–569 (1999)

    Article  MathSciNet  Google Scholar 

  32. Williams, F.A.: Combustion Theory, 2nd edn. Westview Press, Boulder (1985)

    Google Scholar 

  33. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47(3), 741–871 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Humpherys was partially supported by NSF Grant DMS-0847074 (CAREER). Lyng was partially supported by NSF Grant DMS-0845127 (CAREER). Zumbrun was partially supported by NSF Grant DMS-0801745.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Humpherys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendricks, J., Humpherys, J., Lyng, G. et al. Stability of Viscous Weak Detonation Waves for Majda’s Model. J Dyn Diff Equat 27, 237–260 (2015). https://doi.org/10.1007/s10884-015-9440-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9440-3

Keywords

Navigation