Journal of Dynamics and Differential Equations

, Volume 26, Issue 4, pp 915–954 | Cite as

Quasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes

  • Gianni Dal Maso
  • Riccardo Scala


We introduce a model of dynamic visco-elasto-plastic evolution in the linearly elastic regime and prove an existence and uniqueness result. Then we study the limit of (a rescaled version of) the solutions when the data vary slowly. We prove that they converge, up to a subsequence, to a quasistatic evolution in perfect plasticity.


Visco-elasto-plasticity Perfect plasticity Dynamic evolution Quasistatic evolution Discrete time approximation Implicit euler scheme Incremental minimum problems 



This material is based on work supported by the Italian Ministry of Education, University, and Research under the Project “Calculus of Variations” (PRIN 2010-11) and by the European Research Council under Grant No. 290888 “Quasistatic and Dynamic Evolution Problems in Plasticity and Fracture”. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The authors thank the referee for some useful remarks about the role of the viscosity tensor \(A_1\).


  1. 1.
    Agostiniani, V.: Second order approximations of quasistatic evolution problems in finite dimension. Discrete Contin. Dyn. Syst. A 32(4), 1125–1167 (2012)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Anzellotti, G., Luckhaus, S.: Dynamical evolution in elasto-perfectly plastic bodies. Appl. Math. Opt. 15, 121–140 (1987)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Babadjian, J.F., Mora, M.G.: Approximation of dynamic and quasi-static evolution problems in elasto-plasticity by cap models. 2nd rev. ed. Q. Appl. Math., Preprint (2013)Google Scholar
  4. 4.
    Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. 2nd rev. ed. Reidel, Dordrecht (1986)Google Scholar
  5. 5.
    Brezis, H.: Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Hollande Publishing Company, Amsterdam (1972)Google Scholar
  6. 6.
    Maso Dal, G., De Simone, A., Mora, M.G.: Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180, 237–291 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Dal Maso, G., De Simone, A., Mora, M.G., Morini, M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189, 469–544 (2008a)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Dal Maso, G., De Simone, A., Mora, M.G., Morini, M.: Globally stable quasistatic evolution in plasticity with softening. Netw. Heterog. Media 3(3), 567–614 (2008b)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Dal Maso, G., De Simone, A., Solombrino, F.: Quasistatic evolution for cam-clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. Partial Differ. Equ. 40, 125–181 (2011)CrossRefMATHGoogle Scholar
  10. 10.
    Efendiev, M., Mielke, A.: On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13, 151–167 (2006)MATHMathSciNetGoogle Scholar
  11. 11.
    Goffman, C., Serrin, J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178 (1964)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Hill, R.: The Mathematical Theory of the Plasticity. Oxford University Press (1950)Google Scholar
  13. 13.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980)MATHGoogle Scholar
  14. 14.
    Knees, D., Mielke, A., Zanini, C.: On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18, 1529–1569 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Knees, D., Mielke, A., Zanini, C.: Crack growth in polyconvex materials. Phys. D 239, 1470–1484 (2010)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kohn, R., Temam, R.: Dual spaces of stresses and strains, with application to hencky plasticity. Appl. Math. Optim. 10, 1–35 (1983)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Lazzaroni, G., Toader, R.: A model for crack propagation based on viscous approximation. Math. Models Methods Appl. Sci. 21, 2019–2047 (2011)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Lazzaroni, G., Toader, R.: Some remarks on the viscous approximation of crack growth. Discrete Contin. Dyn. Syst. Ser. S 6(1), 131–146 (2013)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Lubliner, J.: Plasticity Theory. Macmillan Publishing Company (1990)Google Scholar
  20. 20.
    Mielke, A.: Evolution of Rate-Independent Systems. In: Dafermos, C.M., Feireisl, E. (eds.) Evolutionary Equations. Handbook of Differential Equations, vol. II, pp. 461–559. Elsevier/North-Holland, Amsterdam (2005)Google Scholar
  21. 21.
    Mielke, A., Truskinovsky, L.: From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Ration. Mech. Anal. 203(2), 577–619 (2012)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Mielke, A., Rossi, R., Savaré, G.: Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25, 585–615 (2009)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. 18(1), 36–80 (2012)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Reshetnyak, YuG: Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9, 1039–1045 (1968)CrossRefGoogle Scholar
  25. 25.
    Rockafellar, R.T.: Convex Analysis. Vol. 28 of Princeton Math. Series, Princeton Univ. Press, (1970). Also available from 1997 in paperback from the same publisher, in the series Princeton Landmarks in Mathematics and Physics. Siberian Math. J. 9, 1039–1045 (1968)Google Scholar
  26. 26.
    Stefanelli, U.: A Variational Characterization of Rate-Independent Evolution. Math. Nachr. 282, 1492–1512 (2009)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Suquet, P.M.: Sur les Équations de la Plasticité: Existence et Régularité des Solutions. J. Mécanique 20(1), 3–39 (1981)MATHMathSciNetGoogle Scholar
  28. 28.
    Temam, R.: Mathematical Problems in Plasticity. Gauthier-Villars, Paris. Translation of Problèmes Mathématiques en Plasticité, Gauthier-Villars, Paris (1983) (1985)Google Scholar
  29. 29.
    Temam, R., Strang, G.: Duality and relaxation in variational problem of plasticity. J. Mécanique 19, 493–527 (1980)MATHMathSciNetGoogle Scholar
  30. 30.
    Toader, R., Zanini, C.: An artificial viscosity approach to quasistatic crack growth. Boll. Unione Mat. Ital. 9(2), 1–35 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.SISSA, Mathematics AreaTriesteItaly

Personalised recommendations