Skip to main content
Log in

On Decay Properties of Solutions to the IVP for the Benjamin–Ono Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this work we investigate unique continuation properties of solutions to the initial value problem associated to the Benjamin–Ono equation in weighted Sobolev spaces \(Z_{s,r}=H^s(\mathbb R )\cap L^2(|x|^{2r}dx)\) for \(s\in \mathbb R \), and \(s\ge 1\), \(s\ge r\). More precisely, we prove that the uniqueness property based on a decay requirement at three times can not be lowered to two times even by imposing stronger decay on the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelouhab, L., Bona, J.L., Felland, M., Saut, J.-C.: Nonlocal models for nonlinear dispersive waves. Phys. D. 40, 360–392 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ablowitz, M.J., Fokas, A.S.: The inverse scattering transform for the Benjamin–Ono equation, a pivot for multidimensional problems. Stud. Appl. Math. 68, 1–10 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Benjamin, T.B.: Internal waves of permanent form in fluids of great depth. J. Fluid. Mech. 29, 559–592 (1967)

    Article  MATH  Google Scholar 

  4. Bergh, J., Löfström, J.: Interpolation spaces. Springer, New York (1970)

    Google Scholar 

  5. Burq, N., Planchon, F.: On the well-posedness of the Benjamin–Ono equation. Math. Ann. 340, 497–542 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coifman, R., Wickerhauser, M.: The scattering transform for the Benjamin–Ono equation. Inverse Probl. 6, 825–860 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fonseca, G., Ponce, G.: The I.V.P for the Benjamin–Ono equation in weighted Sobolev spaces. J. Func. Anal. 260, 436–459 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fonseca, G., Linares, F., Ponce, G.: The I.V.P for the Benjamin–Ono equation in weighted Sobolev spaces II. J. Func. Anal. 262, 2031–2049 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ionescu, A.D., Kenig, C.E.: Global well-posedness of the Benjamin–Ono equation on low-regularity spaces. J. Am. Math. Soc. 20(3), 753–798 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iorio, R.J.: On the Cauchy problem for the Benjamin–Ono equation. Commun. P. D. E. 11, 1031–1081 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iorio, R.J.: Unique continuation principle for the Benjamin–Ono equation. Differ. Integral Equ. 16, 1281–1291 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Kenig, C.E., Koenig, K.D.: On the local well-posedness of the Benjamin–Ono and modified Benjamin–Ono equations. Math. Res. Lett. 10, 879–895 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koch, H., Tzvetkov, N.: On the local well-posedness of the Benjamin–Ono equation on \(H^{s}(\mathbb{R})\). Int. Math. Res. Not. 26, 1449–1464 (2003)

    Article  MathSciNet  Google Scholar 

  14. Molinet, L., Pilod, D.: The Cauchy problem for the Benjamin–Ono equation in \(L^2\) revisited. Anal. P.D.E. 5(2), 365–395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Molinet, L., Saut, J.C., Tzvetkov, N.: Ill-posedness issues for the Benjamin–Ono and related equations. SIAM J. Math. Anal. 33, 982–988 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nahas, J., Ponce, G.: On the persistent properties of solutions to semi-linear Schrödinger equation. Commun. P.D.E. 34, 1–20 (2009)

    Article  MathSciNet  Google Scholar 

  17. Ono, H.: Algebraic solitary waves on stratified fluids. J. Phys. Soc. Jpn. 39, 1082–1091 (1975)

    Article  Google Scholar 

  18. Ponce, G.: On the global well-posedness of the Benjamin–Ono equation. Differ. Integral Equ. 4, 527–542 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Stein, E.M.: The characterization of functions arising as potentials. Bull. Am. Math. Soc. 67, 102–104 (1961)

    Article  Google Scholar 

  20. Tao, T.: Global well-posedness of the Benjamin–Ono equation on \(H^{1}\). J. Hyp. Differ. Equ. 1, 27–49 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Gustavo Ponce for prolific conversations and guidance concerning this paper and to the anonymous referee whose helpful suggestions improve the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Flores.

Appendix: Existence of Infinitely Many Data that Satisfy Given Conditions of Theorem 1

Appendix: Existence of Infinitely Many Data that Satisfy Given Conditions of Theorem 1

We will show that there exists data in the Schwartz class \(u_0\in \mathcal S (\mathbb R )\) such that the following conditions hold (see Eqs. 3.8 and 4.6):

$$\begin{aligned} \Phi _2(u_0,t)=4t^2I_3(u_0)+6t\int xu_0^2(x)dx+12\int x^2 u_0(x)dx=0, \end{aligned}$$

and

$$\begin{aligned} \Phi _1(u_0,t)=\int xu_0(x)dx +\frac{t}{4}\int u_0^2(x)dx=0, \end{aligned}$$

for some time, \(t^*\ne 0\) where

$$\begin{aligned} I_3(u_0)=\int |D^{1/2}u_0(x)|^2+\frac{u_0(x)^3}{3} ~dx. \end{aligned}$$

Consider linearly independent Schwartz class functions, \(f_i\in \mathcal S (\mathbb R )\) for \(i=1,2,3,4\) such that the following are true:

$$\begin{aligned} \begin{array}{lll} \int f_1(x)dx=1, &{} \int xf_1(x)dx=0, &{} \int x^2f_1(x)dx=0, \\ \int f_2(x)dx=0, &{} \int xf_2(x)dx=1, &{} \int x^2f_2(x)dx=0, \\ \int f_3(x)dx=0, &{} \int xf_3(x)dx=0, &{} \int x^2f_3(x)dx=1. \\ \end{array} \end{aligned}$$

An application of the Paley–Weiner theorem will guarantee that such functions satisfying these conditions exist. Next, we define \(\Phi _i(x):\mathbb R ^5\longrightarrow \mathbb R \) for \(i=0,1,2\) as:

$$\begin{aligned} \Phi _0(\alpha _1,\alpha _2,\alpha _3,\alpha _4,t)&= \int \sum \limits _{j=1}^4 \alpha _jf_j ~dx \\ \Phi _1(\alpha _1,\alpha _2,\alpha _3,\alpha _4,t)&= \int x\left( \sum \limits _{j=1}^4 \alpha _jf_j \right) ~dx +\frac{t}{4} \int \left( \sum \limits _{j=1}^4 \alpha _jf_j \right) ^2dx \\ \Phi _2(\alpha _1,\alpha _2,\alpha _3,\alpha _4,t)&= 8t^2 I_3\left( \sum \limits _{j=1}^4 \alpha _jf_j \right) +6t \int x\left( \sum \limits _{j=1}^4 \alpha _jf_j \right) ^2dx\\&+12\int x^2\left( \sum \limits _{j=1}^4 \alpha _jf_j \right) dx. \end{aligned}$$

We apply the Implicit Function Theorem (IFT) to \(F:\mathbb R ^5\longrightarrow \mathbb R ^3\) where

$$\begin{aligned} F(\alpha _1,\alpha _2,\alpha _3,\alpha _4,t)=(\Phi _0,\Phi _1,\Phi _2). \end{aligned}$$

We observe that \(F({0})={{0}}\) and that

$$\begin{aligned} DF(\vec {0})=\left. \left( \frac{\partial \Phi _i}{\partial \alpha _j}\right) \right| _{(\alpha _1,\alpha _2,\alpha _3\alpha _4,t)=\vec {0}}= \left( \begin{array}{ccc|cc} 1 &{} 0 &{} 0 &{}*&{}*\\ 0 &{} 1 &{} 0 &{}*&{}*\\ 0 &{} 0 &{} 12 &{}*&{}*\end{array} \right) , \end{aligned}$$

where the asterisks, \(*\), denote values that are not relevant for the application of the IFT. Thus we can solve for \(\alpha _j\) for \(j=1,2,3\) implicitly in terms of \(\alpha _4\) and \(t\) in a neighborhood of the origin, i.e.,

$$\begin{aligned} F(\alpha _1(\alpha _4,t),\alpha _2(\alpha _4,t),\alpha _3(\alpha _4,t),\alpha _4,t)=\vec {0}, \end{aligned}$$

for values of \(\alpha _4\) and \(t\) that are sufficiently small. Furthermore, there are infinitely many data \(u_0=\sum _{i=1}^4\alpha _if_i\) such that

$$\begin{aligned} \widehat{u_0}(0)&= 0,\\ \Psi _1(u_0,t^*)&= 6t\delta (\xi )\Phi _1(u_0,t^*)=0, \end{aligned}$$

and

$$\begin{aligned} \Psi _2(u_0,t^*)=it^2\delta (\xi )\Phi _2(u_0,t^*)=0, \end{aligned}$$

which is the desired result.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, C. On Decay Properties of Solutions to the IVP for the Benjamin–Ono Equation. J Dyn Diff Equat 25, 907–923 (2013). https://doi.org/10.1007/s10884-013-9321-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-013-9321-6

Keywords

Navigation