Advertisement

Journal of Dynamical and Control Systems

, Volume 25, Issue 2, pp 175–195 | Cite as

Stability of Traveling Wavefronts for a Nonlocal Dispersal System with Delay

  • Zhihua Guo
  • Shi-Liang WuEmail author
Article
  • 109 Downloads

Abstract

This paper is concerned with a nonlocal epidemic model arising from the spread of an epidemic by oral-fecal transmission. Comparing with the previous works, here we extend the model in Capasso and Maddalena, Nonlinear Phenom Math Sci. 41:207–217 (1982) by including a spatial convolution term and a discrete delay term corresponding to the dispersal of bacteria in the environment and the latent period of the virus, respectively. Besides existence and asymptotic behavior, the main part of the paper is devoted to the stability of the traveling wavefronts under some monostable assumptions. By using a comparison theorem and the weighted energy method with a suitably selected weight function, we show that all the non-critical traveling waves are exponentially stable. Finally, we apply our results to a specific epidemic model and discuss the effect of time delay on the stability of wavefront.

Keywords

Traveling wavefront Nonlocal dispersal system Stability Weighted energy method 

Mathematics Subject Classification (2010)

35K57 92D25 92D30 

Notes

Acknowledgments

We are very grateful to the referees for their helpful comments and suggestions which led to an improvement of our original manuscript.

References

  1. 1.
    Brown KJ, Carr J. Deterministic epidemic waves of critical velocity. Math Proc Camb Philos Soc 1977;81:431–3.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Capasso V. Asymptotic stability for an integro-differential reaction-diffusion system. J Math Anal Appl 1984;103:575–88.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Capasso V, Maddalena L. A nonlinear diffusion system modelling the spread of oro-faecal diseases. Nonlinear Phenom Math Sci 1982;41:207–17.CrossRefzbMATHGoogle Scholar
  4. 4.
    Capasso V, Kunisch K. A reaction-diffusion system arising in modelling man-environment disease. Q Appl Math 1988;46:431–50.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Capasso V, Maddalena L. Convergence to equilibrium states for a reaction-diffusion system modeling the spatial spread of a class of bacterial and viral diseases. J Math Biol 1981;13:173–84.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Capasso V, Wilson RE. Analysis of a reaction-diffusion system modeling man-environment-man epidemics. Siam J Appl Math 1997;57:327–46.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Carr J, Chmaj A. Uniquensee of travelling waves for nonlocal monostable equations. Proc Amer Math Soc 2004;132:2433–39.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hsu C-H, Yang T-S. Existence uniqueness monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity 2013;26:121–39.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huang R, Mei M, Wang Y. Planar traveling waves for nonlocal dispersion equations with monostable nonlinearity. Discrete Contin Dyn Syst 2012;32:3621–49.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Huang R, Mei M, Zhang K, Zhang Q. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete Contin Dyn Syst 2016;36:1331–53.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lee CT et al. Non-local concepts in models in biology. J Theor Biol 2001;210: 201–19.CrossRefGoogle Scholar
  12. 12.
    Li W -T, Ruan S, Wang ZC. On the diffusive Nicholson’s blowflies equation with nonlocal delays. J Nonlinear Sci 2007;17:505–25.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Murray J. Mathematical biology. Berlin: Springer; 1993.CrossRefzbMATHGoogle Scholar
  14. 14.
    Mei M. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Proceedings of the 7th AIMS International Conference. Texas: Discrete Contin Dyn Syst., Supplement; 2009. p. 526–35.Google Scholar
  15. 15.
    Mei M, Ou C, Zhao X -Q. Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations. SIAM J Math Anal 2010;42:2762–90.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mei M, Lin C -K, Lin C -T, So J W -H. Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity. J Differ Equ 2009;247: 495–510.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mei M, Lin C -K, Lin C -T, So J W -H. Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity. J Differ Equ 2009; 247:511–29.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pan S. Invasion speed of a predator-prey system. Appl Math Lett 2017;74:46–51.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pan S, Li W -T, Lin G. Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay. Nonlinear Anal 2010;72:3150–58.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Thieme HR, Zhao X -Q. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J Differ Equ 2003;195:430–70.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang ZC, Li W -T, Ruan S. Traveling fronts in monostable equations with nonlocal delayed effects. J Dyn Diff Equat 2008;20:573–607.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wu S -L, Hsu C -H. Existence of entire solution for delayed monostable epidemic models. Trans Amer Math Soc 2015;368:6033–62.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wu S -L, Hsu C -H, Xiao Y. Global attractivity, spreading speeds and traveling waves of delayed nonlocal reaction-diffusion systems. J Differ Equ 2015;258: 1058–105.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wu S -L, Liu S -Y. Existence and uniqueness of traveling waves for non-monotone integral equations with application. J Math Anal Appl 2010;365:729–41.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wu S -L, Li W -T, Liu S -Y. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete Contin Dyn Syst Ser B 2012;17:347–66.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Xu D, Zhao X -Q. Bistable waves in an epidemic model. J Dyn Diff Equat 2004; 16:679–707.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Xu D, Zhao X -Q. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discret Contin Dynam syst Ser B 2005;5:1043–56.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Yang Y -R, Li W -T, Wu S -L. Exponential stability of traveling fronts in a diffusion epidemic system with delay. Nonlinear Anal 2011;12:1223–34.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zhang L, Li W -T, Wu S -L. Multi-type entire solutions in a nonlocal dispersal epidemic model. J Dyn Diff Equat 2016;28:189–224.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhao X -Q, Wang W. Fisher waves in an epidemic model. Discret Contin Dyn Syst Ser B 2004;4:1117–28.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zou X. Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type. J Comput Appl Math 2002;146:309–21.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXidian University Xi’anShaanxiPeople’s Republic of China

Personalised recommendations