Skip to main content
Log in

A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Residents of mainland China always come to the first-class hospitals. Facing limitations to medical resources, hospital managers consider adding some potential capacity beyond the regular daily capacity to meet demands and improve the profit. This paper systematically studies the capacity-addition policy, and compares two kinds of them: fixed capacity-addition policy (F-CAP) and variable capacity-addition policy (V-CAP). The former sets the additional capacity by simple calculations according to experiences or history statistics. Under the V-CAP policy, the additional capacity is determined by solving an optimization model rather than a constant. The V-CAP definitely achieves the optimal expected profit, which can be regarded as the benchmark that leads to the best improvement. Since the F-CAP is widely used in many first-class hospitals in practice, this paper attempts to explore in which situations the F-CAP can achieve a similar improvement of the V-CAP, and in what environments the additional capacity should be a variable. In addition to focusing on additional capacity, both policies allocate the regular capacity to two types of patient: routine patients and same-day patients, who have different no-show probabilities. We formulate linear integer programming models of F-CAP and V-CAP to maximize the expected profit. Several propositions and corollaries are proved to cut off the solution space and accelerate the search process. The optimal additional capacity can be directly determined by these properties, and the optimal value is non-decreasing with the regular capacity allocated to routine patients. Numerical experiments indicate that the optimal total supply of regular capacity and additional capacity is always less than the expected total demand. The F-CAP is recommended to the environments with low no-show probabilities of routine patients and same-day patients, moderate expected total demand, correlation coefficient of demands and regular capacity, where the reduction of the expected profit is less than 5% of the F-CAP compared to the V-CAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadi-Javid A, Jalali Z, Klassen KJ (2017) Outpatient appointment systems in healthcare: a review of optimization studies. Eur J Oper Res 258(1):3–34

    Article  MathSciNet  MATH  Google Scholar 

  • Balasubramanian H, Muriel A, Wang L (2012) The impact of flexibility and capacity allocation on the performance of primary care practices. Flex Serv Manuf J 24(4):422–447

    Article  Google Scholar 

  • Cayirli T, Veral E (2003) Outpatient scheduling in health care: a review of literature. Prod Oper Manag 12(4):519–549

    Article  Google Scholar 

  • Chen RR, Robinson LW (2014) Sequencing and scheduling appointments with potential call-in patients. Prod Oper Manag 23(9):1522–1538

    Article  Google Scholar 

  • El-Sharo M, Zheng B, Yoon SW, Khasawneh MT (2015) An overbooking scheduling model for outpatient appointments in a multi-provider clinic. Oper Res Health Care 6:1–10

    Article  Google Scholar 

  • Green LV, Savin S, Murray M (2007) Providing timely access to care: what is the right patient panel size? Jt Comm J Qual Patient Saf 33(4):211–218

    Article  Google Scholar 

  • Harris SL, May JH, Vargas LG (2016) Predictive analytics model for healthcare planning and scheduling. Eur J Oper Res 253(1):121–131

    Article  MathSciNet  MATH  Google Scholar 

  • Izady N (2015) Appointment capacity planning in specialty clinics: a queueing approach. Oper Res 63(4):916–930

    Article  MathSciNet  MATH  Google Scholar 

  • Kim S, Giachetti RE (2006) A stochastic mathematical appointment overbooking model for healthcare providers to improve profits. IEEE Trans Syst Man Cybern 36(6):1211–1219

    Article  Google Scholar 

  • Koeleman PM, Koole GM (2012) Optimal outpatient appointment scheduling with emergency arrivals and general service times. IIE Trans Healthc Syst Eng 2(1):14–30

    Article  Google Scholar 

  • Kopach R, DeLaurentis PC, Lawley M, Muthuraman K, Ozsen L, Rardin R, Wan H, Intrevado P, Qu X, Willis D (2007) Effects of clinical characteristics on successful open access scheduling. Health Care Manag Sci 10(2):111–124

    Article  Google Scholar 

  • LaGanga LR, Lawrence SR (2012) Appointment overbooking in health care clinics to improve patient service and clinic performance. Prod Oper Manag 21(5):874–888

    Article  Google Scholar 

  • Li J, Dong M, Ren Y, Yin K (2015) How patient compliance impacts the recommendations for colorectal cancer screening. J Comb Optim 30(4):920–937

    Article  MathSciNet  MATH  Google Scholar 

  • Liu N (2015) Optimal choice for appointment scheduling window under patient no-show behavior. Prod Oper Manag 25(1):128–142

    Article  Google Scholar 

  • Liu N, Ziya S (2014) Panel size and overbooking decisions for appointment-based services under patient no-shows. Prod Oper Manag 23(12):2209–2223

    Article  Google Scholar 

  • Liu L, Tang G, Fan B, Wang X (2015) Two-person cooperative games on scheduling problems in outpatient pharmacy dispensing process. J Comb Optim 30(4):938–948

    Article  MathSciNet  MATH  Google Scholar 

  • McMullen MJ, Netland PA (2015) Lead time for appointment and the no-show rate in an ophthalmology clinic. Clin Ophthalmol 9:513–516

    Google Scholar 

  • Qu X, Shi J (2009) Effect of two-level provider capacities on the performance of open access clinics. Health Care Manag Sci 12(1):99–114

    Article  Google Scholar 

  • Qu X, Rardin RL, Williams JAS, Willis DR (2007) Matching daily healthcare provider capacity to demand in advanced access scheduling systems. Eur J Oper Res 183(2):812–826

    Article  MATH  Google Scholar 

  • Qu X, Rardin RL, Williams JAS (2012) A mean variance model to optimize the fixed versus open appointment percentages in open access scheduling systems. Decis Support Syst 53(3):554–564

    Article  Google Scholar 

  • Ratcliffe A, Gilland W, Marucheck A (2012) Revenue management for outpatient appointments: joint capacity control and overbooking with class-dependent no-shows. Flex Serv Manuf J 24(4):516–548

    Article  Google Scholar 

  • Robinson LW, Chen RR (2010) A comparison of traditional and open-access policies for appointment scheduling. Manuf Serv Oper Manag 12(2):330–346

    Article  Google Scholar 

  • Samorani M, Laganga LR (2015) Outpatient appointment scheduling given individual day-dependent no-show predictions. Eur J Oper Res 240(1):245–257

    Article  MathSciNet  MATH  Google Scholar 

  • Tang J, Yan C, Cao P (2014) Appointment scheduling algorithm considering routine and urgent patients. Expert Syst Appl 41(10):4529–4541

    Article  Google Scholar 

  • Truong VA (2015) Optimal advance scheduling. Manag Sci 61(7):1584–1597

    Article  Google Scholar 

  • Tsai PFJ, Teng GY (2014) A stochastic appointment scheduling system on multiple resources with dynamic call-in sequence and patient no-shows for an outpatient clinic. Eur J Oper Res 239(2):427–436

    Article  MathSciNet  MATH  Google Scholar 

  • Yan C, Tang J, Jiang B, Fung RYK (2015) Sequential appointment scheduling considering patient choice and service fairness. Int J Prod Res 53(24):7376–7395

    Article  Google Scholar 

  • Zacharias C, Pinedo M (2014) Appointment scheduling with no-shows and overbooking. Prod Oper Manag 23(5):788–801

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (NSFC 71420107028, 71501027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiafu Tang.

Appendix

Appendix

Proofs of the theorems and corollaries in Sects. 4 and 5

1. Proof of Proposition 1

If there is an integer \({C_R} \in \left\{ {1,2, \ldots ,N - 1} \right\} \) that satisfies \(E_\pi ^F\left( {{C_R}} \right) - E_\pi ^F\left( {{C_R}\! -\! 1} \right) \! > 0\) and \(E_\pi ^F\left( {{C_R} + 1} \right) - E_\pi ^F\left( {{C_R}} \right) < 0\), \({C_R}\) is a local optimal solution to the programming P-F. There are equations (A.1) to (A.3),

$$\begin{aligned}&E_R^F\left( {{C_R} + 1} \right) - E_R^F\left( {{C_R}} \right) = {P_R}\left( {{D_R} > {C_R} - 1} \right) \end{aligned}$$
(A.1)
$$\begin{aligned}&E_O^F\left( {{C_R} + 1} \right) - E_O^F\left( {{C_R}} \right) = - P\left( {{D_R}> {C_R},{D_O} > N + {N_A} - {C_R} - 1} \right) \nonumber \\ \end{aligned}$$
(A.2)
$$\begin{aligned}&E_c^F\left( {{C_R} + 1} \right) - E_c^F\left( {{C_R}} \right) = P\left( {{D_R}> {C_R},{D_O}> N - {C_R} - 1} \right) \nonumber \\&\quad -\,P\left( {{D_R}> {C_R},{D_O} > N + {N_A} - {C_R} - 1} \right) \end{aligned}$$
(A.3)

Therefore, \(E_\pi ^F\left( {{C_R}} \right) - E_\pi ^F\left( {{C_R} - 1} \right) > 0\) and \(E_\pi ^F\left( {{C_R} + 1} \right) - E_\pi ^F\left( {{C_R}} \right) < 0\) are equivalent to inequalities (A.4) and (A.5).

$$\begin{aligned}&\left( {1 - {\theta _R} + {\alpha _R}} \right) \, {P_R}\left( {{D_R}> {C_R} - 1} \right) \nonumber \\&\quad>\beta \, P\left( {{D_R}> {C_R} - 1,{D_O}> N - {C_R}} \right) \nonumber \\&\qquad + \left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) \, P\left( {{D_R}> {C_R} - 1,{D_O} > N + {N_A} - {C_R}} \right) \end{aligned}$$
(A.4)
$$\begin{aligned}&\left( {1 - {\theta _R} + {\alpha _R}} \right) \, {P_R}\left( {{D_R}> {C_R}} \right) \nonumber \\&\quad < \beta \, P\left( {{D_R}> {C_R},{D_O}> N - {C_R} - 1} \right) \nonumber \\&\qquad \mathrm{{ + }} \left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) \, P\left( {{D_R}> {C_R},{D_O} > N + {N_A} - {C_R} - 1} \right) \end{aligned}$$
(A.5)

Since \(\left( {1 - {\theta _R} + {\alpha _R}} \right) \, {P_R}\left( {{D_R}> {C_R} - 1} \right) > 0\) and \(\left( {1 - {\theta _R} + {\alpha _R}} \right) \, {P_R}\left( {{D_R}> {C_R}} \right) > 0\), divide the two, respectively, in (A.4) and (A.5). Then, the left-hand sides are equal to 1, and the right-hand sides are conditional probabilities multiplied by ratios of revenue and cost weights. Hence inequalities (A.4) and (A.5) are equivalent to inequalities (15) and (16) in Proposition 1. If an integer \({C_R} \in \left\{ {1,2, \ldots ,N - 1} \right\} \) satisfies (15) and (16), it is a local optimal solution.

If \({C_R}=0\) is a local optimal solution, then \(E_\pi ^F\left( 1 \right) - E_\pi ^F\left( 0 \right) < 0\), which is equivalent to \(E_\pi ^F\left( {{C_R} + 1} \right) - E_\pi ^F\left( {{C_R}} \right) < 0\) when \({C_R}=0\), is required. Thus, if inequality (A.5) holds when \({C_R}=0\), then \({C_R}=0\) is a local optimal solution.

If \({C_R}=N\) is a local optimal solution, then \(E_\pi ^F\left( N \right) - E_\pi ^F\left( {N - 1} \right) > 0\), which is equivalent to \(E_\pi ^F\left( {{C_R}} \right) - E_\pi ^F\left( {{C_R} - 1} \right) > 0\) when \({C_R}=N\), is required. Thus, if inequality (A.4) holds when \({C_R}=N\), then \({C_R}=N\) is a local optimal solution.

2. Proof of Corollary 1

Let \({i^ * }\) denote the local optimal solution satisfying Proposition 1. When \(P\left( {{D_O}> H}\right. \left. {- {C_R}|{D_R}> {C_R}} \right) < P\left( {{D_O}> H - {C_R} - 1|{D_R} > {C_R} + 1} \right) \)

(1). If \({i^ * } \in \left\{ {1,2, \ldots ,N - 1} \right\} \), then we have

$$\begin{aligned}&\displaystyle \frac{{1 - {\theta _O} + {\alpha _O} - \beta }}{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N + {N_A} - {i^ * }|{D_R}> {i^ * } - 1} \right) \nonumber \\&\quad \displaystyle +\,\frac{\beta }{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N - {i^ * }|{D_R} > {i^ * } - 1} \right) < 1 \end{aligned}$$
(A.6)
$$\begin{aligned}&\displaystyle \frac{{1 - {\theta _O} + {\alpha _O} - \beta }}{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N + {N_A} - {i^ * } - 1|{D_R}> {i^ * }} \right) \nonumber \\&\quad \displaystyle +\,\frac{\beta }{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N - {i^ * } - 1|{D_R}> {i^ * }} \right) > 1 \end{aligned}$$
(A.7)

1) For all \(i \in \left\{ {0,1, \ldots ,{i^ * } - 1} \right\} \), the sum of weighted conditional probabilities holds that

$$\begin{aligned}&\displaystyle \frac{{1 - {\theta _O} + {\alpha _O} - \beta }}{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N + {N_A} - i|{D_R}> i - 1} \right) \nonumber \\&\quad \displaystyle + \frac{\beta }{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N - i|{D_R}> i - 1} \right) \nonumber \\&\displaystyle< \frac{{1 - {\theta _O} + {\alpha _O} - \beta }}{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N + {N_A} - {i^ * }|{D_R}> {i^ * } - 1} \right) \nonumber \\&\quad \displaystyle +\,\frac{\beta }{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N - {i^ * }|{D_R} > {i^ * } - 1} \right) < 1 \end{aligned}$$
(A.8)

Hence \(i \in \left\{ {1,2, \ldots ,{i^ * } - 1} \right\} \) and \(i=0\) cannot satisfy conditions (i) and (ii), and \(i \in \left\{ {0,1, \ldots ,{i^ * } - 1} \right\} \) are not local optimal solutions;

2) For all \(i \in \left\{ {{i^ * } + 1, \ldots ,N - 1,N} \right\} \), the sum of weighted conditional probabilities holds that

$$\begin{aligned}&\displaystyle \frac{{1 - {\theta _O} + {\alpha _O} - \beta }}{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N + {N_A} - i - 1|{D_R}> i} \right) \nonumber \\&\displaystyle \quad +\,\frac{\beta }{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N - i - 1|{D_R}> i} \right) \nonumber \\&\displaystyle> \frac{{1 - {\theta _O} + {\alpha _O} - \beta }}{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N + {N_A} - {i^ * } - 1|{D_R}> {i^ * }} \right) \nonumber \\&\displaystyle \quad +\,\frac{\beta }{{1 - {\theta _R} + {\alpha _R}}} \, P\left( {{D_O}> N - {i^ * } - 1|{D_R}> {i^ * }} \right) > 1 \end{aligned}$$
(A.9)

Therefore, \(i \in \left\{ {{i^ * } + 1,{i^ * } + 2, \ldots ,N - 1} \right\} \) and \(i=N\) cannot satisfy conditions (i) and (iii), and \(i \in \left\{ {{i^ * } + 1, \ldots ,N - 1,N} \right\} \) are not local optimal solutions.

So \(i^*\)is the only optimal solution for all \(i \in \left\{ {1,2, \ldots ,N} \right\} \).

(2). If \(i^*=0\), we have inequality (A.7). All \(i \in \left\{ {1,2, \ldots ,N} \right\} \) satisfy inequality (A.9). Hence \(i \in \left\{ {1,2, \ldots ,N - 1} \right\} \) and \(i=N\) cannot satisfy conditions (i) and (iii), and \(i \in \left\{ {1,2, \ldots ,N} \right\} \) are not local optimal solutions.

(3). If \(i^*=N\), we have inequality (A.6). All \(i \in \left\{ {0,1, \ldots ,N-1} \right\} \) satisfy inequality (A.8). Hence \(i \in \left\{ {1,2, \ldots ,N - 1} \right\} \) and \(i=0\) cannot satisfy conditions (i) and (ii), and \(i \in \left\{ {0,1, \ldots ,N-1} \right\} \) are not local optimal solutions.

In summary, if \(P\left( {{D_O}> H - {C_R}|{D_R}> {C_R}} \right) < P\left( {{D_O}> H - {C_R} - 1|{D_R} >}\right. \left. {{C_R} + 1} \right) \), the solution satisfying the conditions in Proposition 1 is the only optimal solution in the feasible space.

3. Proof of Proposition 2

If the demands of two types of patients are independent, inequalities (15) and (16) are equivalent to (A.10) and (A.11).

$$\begin{aligned}&\displaystyle \frac{{1 - {\theta _O} + {\alpha _O} - \beta }}{{1 - {\theta _R} + {\alpha _R}}} \, {P_O}\left( {{D_O}> N + {N_A} - {C_R}} \right) \nonumber \\&\displaystyle \quad + \frac{\beta }{{1 - {\theta _R} + {\alpha _R}}} \, {P_O}\left( {{D_O} > N - {C_R}} \right) < 1 \end{aligned}$$
(A.10)
$$\begin{aligned}&\displaystyle \frac{{1 - {\theta _O} + {\alpha _O} - \beta }}{{1 - {\theta _R} + {\alpha _R}}} \, {P_O}\left( {{D_O}> N + {N_A} - {C_R} - 1} \right) \nonumber \\&\displaystyle \quad + \frac{\beta }{{1 - {\theta _R} + {\alpha _R}}} \, {P_O}\left( {{D_O}> N - {C_R} - 1} \right) > 1 \end{aligned}$$
(A.11)

It is obvious that \({P_O}\left( {{D_O} > H - {C_R}} \right) \) increases monotonically with \({C_R}\). As in the proof of Corollary 1, there is only one solution that satisfies the optimal conditions, such as in (A.10) and (A.11). Therefore, when \(E_\pi ^F\left( {C_R^ * } \right) - E_\pi ^F\left( {C_R^ * - 1} \right) > 0\) and \(E_\pi ^F\left( {C_R^ * + 1} \right) - E_\pi ^F\left( {C_R^ * } \right) < 0\), the expected profit decreases and does not increase again for all \({C_R} \in \left\{ {C_R^ * + 1,C_R^ * + 2, \ldots ,N} \right\} \). Hence \(E_\pi ^F\left( {{C_R}} \right) \) is a unimodal function of \({C_R}\).

4. Proof of Corollary 2

Inequalities (A.10) and (A.11) are equivalent to inequalities (A.13) and (A.12), respectively, by multiplying \(1 - {\theta _R} + {\alpha _R}\) to the right-hand side, and conversely presenting the probabilities that same-day patient demand is not greater than the corresponding supply.

$$\begin{aligned}&\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) \, {P_O}\left( {{D_O} \le N + {N_A} - {C_R} - 1} \right) \nonumber \\&\quad +\,\beta \, {P_O}\left( {{D_O} \le N - {C_R} - 1} \right) < {\theta _R} - {\theta _O} + {\alpha _O} - {\alpha _R} \end{aligned}$$
(A.12)
$$\begin{aligned}&\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) \, {P_O}\left( {{D_O} \le N + {N_A} - {C_R}} \right) \nonumber \\&\quad +\,\beta \, {P_O}\left( {{D_O} \le N - {C_R}} \right) > {\theta _R} - {\theta _O} + {\alpha _O} - {\alpha _R} \end{aligned}$$
(A.13)

Therefore, similar to the conditions in Proposition 1, when the demands of two types of patients are independent, the conditions determining whether a solution is global optimal are:

  1. i.

    when \({C_R} \in \left\{ {1,2, \ldots ,N - 1} \right\} \), both inequalities (A.12) and (A.13) hold;

  2. ii.

    when \({C_R}=0\), inequality (A.12) holds;

  3. iii.

    when \({C_R}=N\), inequality (A.13) holds.

5. Proof of Proposition3

For a certain value \({N_R}\), when the additional capacity increase from \({C_A}\) to \({C_A}+1\), the increment in the expected number of same-day appointments and expected doctors overwork are

$$\begin{aligned} \varDelta E_O^D\left( {{C_A},{N_R}} \right)= & {} E_O^D\left( {{C_A} + 1,{N_R}} \right) - E_O^D\left( {{C_A},{N_R}} \right) \nonumber \\= & {} P\left( {{D_R} \le {N_R},{D_O}> N + {C_A} - {d_R}} \right) \nonumber \\&+\,P\left( {{D_R}> {N_R},{D_O} > N + {C_A} - {N_R}} \right) \end{aligned}$$
(A.14)
$$\begin{aligned} \varDelta E_c^D\left( {{C_A},{N_R}} \right)= & {} E_c^D\left( {{C_A} + 1,{N_R}} \right) - E_c^D\left( {{C_A},{N_R}} \right) \nonumber \\= & {} P\left( {{D_R} \le {N_R},{D_O}> N + {C_A} - {d_R}} \right) \nonumber \\&+\,P\left( {{D_R}> {N_R},{D_O} > N + {C_A} - {N_R}} \right) \end{aligned}$$
(A.15)

Since \(\varDelta E_O^D\left( {{C_A},{N_R}} \right) > 0\) and \(\varDelta E_c^D\left( {{C_A},{N_R}} \right) > 0\), \(\varDelta E_O^D\left( {{C_A},{N_R}} \right) \) and \(\varDelta E_c^D\left( {{C_A},{N_R}} \right) \) monotonically increase with \({C_A}\). Additionally, \(\varDelta E_O^D\left( {{C_A},{N_R}} \right) = \varDelta E_c^D\left( {{C_A},{N_R}} \right) \), and intuitively, the increment monotonically decreases with \({C_A}\). Therefore, \(\varDelta E_O^D\left( {{C_A},{N_R}} \right) \) and \(\varDelta E_c^D\left( {{C_A},{N_R}} \right) \) have the same increment with monotonic decrease.

6. Proof of Proposition 4

For a certain value of \({N_R}\), the increment in expected profit from \({C_A}\) to \({C_A}+1\) is shown as expression (A.16).

$$\begin{aligned} \varDelta E_\pi ^D\left( {{C_A},{N_R}} \right)= & {} E_\pi ^D\left( {{C_A} + 1,{N_R}} \right) - E_\pi ^D\left( {{C_A},{N_R}} \right) \nonumber \\= & {} \left( {1 - {\theta _O} + {\alpha _O}} \right) \, \varDelta E_O^D\left( {{C_A},{N_R}} \right) - \beta \, \varDelta E_c^D\left( {{C_A},{N_R}} \right) - \gamma \nonumber \\= & {} - \gamma + \left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) \nonumber \\&\times \left\{ {P\left( {{D_R} \le {N_R},{D_O}> N + {C_A} - {d_R}} \right) } \right. \nonumber \\&\left. { + P\left( {{D_R}> {N_R}, {D_O} > N + {C_A} - {N_R}} \right) } \right\} \end{aligned}$$
(A.16)

\(\left\{ {P\left( {{D_R} \le {N_R},{D_O}> N + {C_A} - {d_R}} \right) + P\left( {{D_R}> {N_R},{D_O} > N + {C_A} - {N_R}} \right) } \right\} \) decreases with \({C_A}\), \(\mathrm{{ }}\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) > 0\), and therefore, if \(\varDelta E_\pi ^D\left( {{C_A},{N_R}} \right) < 0\) for all \({C_A} \ge 0\), then

$$\begin{aligned}&\varDelta E_\pi ^D\left( {{C_A} + 1,{N_R}} \right) \nonumber \\&\quad = - \gamma + \left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) \times \left\{ {P\left( {{D_R} \le {N_R},{D_O}> N + {C_A} + 1 - {d_R}} \right) } \right. \nonumber \\&\qquad \left. { + P\left( {{D_R}> {N_R},{D_O}> N + {C_A} + 1 - {N_R}} \right) } \right\} \nonumber \\&\quad< - \gamma + \left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) \times \left\{ {P\left( {{D_R} \le {N_R},{D_O}> N + {C_A} - {d_R}} \right) } \right. \nonumber \\&\qquad \left. { + P\left( {{D_R}> {N_R},{D_O} > N + {C_A} - {N_R}} \right) } \right\} \nonumber \\&\quad = \varDelta E_\pi ^D\left( {{C_A},{N_R}} \right) < 0 \end{aligned}$$
(A.17)

Once the increment in \(E_\pi ^D\left( {{C_A},{N_R}} \right) \) becomes smaller than 0, it is always negative.

7. Proof of Corollary 3

For a certain value of \({N_R}\), (1) if the global optimal \(C_A^{ * {N_R}} > 0\), then \(E_\pi ^D\left( {C_A^{ * {N_R}},{N_R}} \right) - E_\pi ^D\left( {C_A^{ * {N_R}} - 1,{N_R}} \right) > 0\) and \(E_\pi ^D\left( {C_A^{ * {N_R}} + 1,{N_R}} \right) - E_\pi ^D\left( {C_A^{ * {N_R}}},\right. \left. {{N_R}} \right) < 0\), which are equivalent to

$$\begin{aligned}&E_\pi ^D\left( {C_A^{ * {N_R}},{N_R}} \right) - E_\pi ^D\left( {C_A^{ * {N_R}} - 1,{N_R}} \right) \nonumber \\&= \left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) \, \left\{ {P\left( {{D_R} \le {N_R},{D_O}> N + C_A^{ * {N_R}} - 1 - {d_R}} \right) } \right. \nonumber \\&\qquad \left. { +\,P\left( {{D_R}> {N_R},{D_O}> N + C_A^{ * {N_R}} - 1 - {N_R}} \right) } \right\} - \gamma > 0 \end{aligned}$$
(A.18)
$$\begin{aligned}&E_\pi ^D\left( {C_A^{ * {N_R}} + 1,{N_R}} \right) - E_\pi ^D\left( {C_A^{ * {N_R}},{N_R}} \right) \nonumber \\&= \left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) \, \left\{ {P\left( {{D_R} \le {N_R},{D_O}> N + C_A^{ * {N_R}} - {d_R}} \right) } \right. \nonumber \\&\qquad \left. { +\,P\left( {{D_R}> {N_R},{D_O} > N + C_A^{ * {N_R}} - {N_R}} \right) } \right\} - \gamma < 0 \end{aligned}$$
(A.19)

Therefore, the optimal conditions hold inequalities (A.20) and (A.21).

$$\begin{aligned}&P\left( {{D_R} \le {N_R},{D_O}> N + C_A^{ * {N_R}} - 1 - {d_R}} \right) \nonumber \\&\qquad +\,P\left( {{D_R}> {N_R},{D_O}> N + C_A^{ * {N_R}} - 1 - {N_R}} \right) \nonumber \\&\quad > {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }} \end{aligned}$$
(A.20)
$$\begin{aligned}&P\left( {{D_R} \le {N_R},{D_O}> N + C_A^{ * {N_R}} - {d_R}} \right) \nonumber \\&\qquad + P\left( {{D_R}> {N_R},{D_O} > N + C_A^{ * {N_R}} - {N_R}} \right) \nonumber \\&\quad < {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }} \end{aligned}$$
(A.21)

(2) if the global optimal \(C_A^{ * {N_R}} = 0\), then \(E_\pi ^D\left( {{1^{{N_R}}},{N_R}} \right) - E_\pi ^D\left( {{0^{{N_R}}},{N_R}} \right) < 0\), which is equivalent to inequality (A.21) by substituting \(C_A^{ * {N_R}} = 0\).

8. Proof of Proposition 5

Denote \(\varDelta \left( {{C_A},{N_R}} \right) = \varDelta E_O^D\left( {{C_A},{N_R}} \right) = \varDelta E_c^D\left( {{C_A},{N_R}} \right) \). According to the optimal conditions in Corollary 3, if \(C_A^{ * {N_R}}\) is an optimal solution of additional capacity under a certain \({N_R}\),

(1) when \(C_A^{ * {N_R}} > 0\), \(\varDelta \left( {C_A^{ * {N_R}},{N_R}} \right) < {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }}\) and \(\varDelta \left( {C_A^{ * {N_R}} - 1,}\right. \left. {N_R} \right) > {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }}\). Further, relationships also hold that

$$\begin{aligned}&\varDelta \left( {C_A^{ * {N_R}} + 1,{N_R} + 1} \right) - \varDelta \left( {C_A^{ * {N_R}},{N_R}} \right) \nonumber \\&= P\left( {{D_R} \le {N_R} + 1,{D_O}> N + C_A^{ * {N_R}} + 1 - {d_R}} \right) \nonumber \\&\quad +\,P\left( {{D_R}> {N_R} + 1,{D_O}> N + C_A^{ * {N_R}} - {N_R}} \right) \nonumber \\&\quad -\,P\left( {{D_R} \le {N_R},{D_O}> N + C_A^{ * {N_R}} - {d_R}} \right) \nonumber \\&\quad -\,P\left( {{D_R}> {N_R},{D_O} > N + C_A^{ * {N_R}} - {N_R}} \right) \nonumber \\&= - P\left( {{D_R} \le {N_R},{D_O} = N + C_A^{ * {N_R}} + 1 - {d_R}} \right) < 0\end{aligned}$$
(A.22)
$$\begin{aligned}&\varDelta \left( {C_A^{ * {N_R}} - 1,{N_R} + 1} \right) - \varDelta \left( {C_A^{ * {N_R}} - 1,{N_R}} \right) \nonumber \\&= P\left( {{D_R} \le {N_R} + 1,{D_O}> N + C_A^{ * {N_R}} - 1 - {d_R}} \right) \nonumber \\&\quad +\,P\left( {{D_R}> {N_R} + 1,{D_O}> N + C_A^{ * {N_R}} - {N_R} - 2} \right) \nonumber \\&\quad -\,P\left( {{D_R} \le {N_R},{D_O}> N + C_A^{ * {N_R}} - 1 - {d_R}} \right) \nonumber \\&\quad -\,P\left( {{D_R}> {N_R},{D_O}> N + C_A^{ * {N_R}} - 1 - {N_R}} \right) \nonumber \\&= P\left( {{D_R}> {N_R},{D_O} = N + C_A^{ * {N_R}} - {N_R} - 1} \right) > 0 \end{aligned}$$
(A.23)
$$\begin{aligned}&\varDelta \left( {C_A^{ * {N_R}},{N_R} + 1} \right) - \varDelta \left( {C_A^{ * {N_R}},{N_R}} \right) \nonumber \\&= P\left( {{D_R} \le {N_R} + 1,{D_O}> N + C_A^{ * {N_R}} - {d_R}} \right) \nonumber \\&\quad +\,P\left( {{D_R}> {N_R} + 1,{D_O}> N + C_A^{ * {N_R}} - {N_R} - 1} \right) \nonumber \\&\quad -\,P\left( {{D_R} \le {N_R},{D_O}> N + C_A^{ * {N_R}} - {d_R}} \right) \nonumber \\&\quad -\,P\left( {{D_R}> {N_R},{D_O}> N + C_A^{ * {N_R}} - {N_R}} \right) \nonumber \\&= P\left( {{D_R}> {N_R},{D_O} = N + C_A^{ * {N_R}} - {N_R}} \right) > 0 \end{aligned}$$
(A.24)
$$\begin{aligned}&\varDelta \left( {C_A^{ * {N_R}},{N_R} + 1} \right) - \varDelta \left( {C_A^{ * {N_R}} - 1,{N_R}} \right) \nonumber \\&= P\left( {{D_R} \le {N_R} + 1,{D_O}> N + C_A^{ * {N_R}} - {d_R}} \right) \nonumber \\&\quad +\,P\left( {{D_R}> {N_R} + 1,{D_O}> N + C_A^{ * {N_R}} - {N_R} - 1} \right) \nonumber \\&\quad -\,P\left( {{D_R} \le {N_R},{D_O}> N + C_A^{ * {N_R}} - {d_R} - 1} \right) \nonumber \\&\quad -\,P\left( {{D_R}> {N_R},{D_O} > N + C_A^{ * {N_R}} - {N_R} - 1} \right) \nonumber \\&= -\,P\left( {{D_R} \le {N_R},{D_O} = N + C_A^{ * {N_R}} - {d_R}} \right) < 0 \end{aligned}$$
(A.25)

Thus, we have

$$\begin{aligned}&\varDelta \left( {C_A^{ * {N_R}} + 1,{N_R} + 1} \right)< \varDelta \left( {C_A^{ * {N_R}},{N_R}} \right) < {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }} \end{aligned}$$
(A.26)
$$\begin{aligned}&\varDelta \left( {C_A^{ * {N_R}} - 1,{N_R} + 1} \right) \nonumber \\&\quad> \varDelta \left( {C_A^{ * {N_R}} - 1,{N_R}} \right) > {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }} \end{aligned}$$
(A.27)
$$\begin{aligned}&\varDelta \left( {C_A^{ * {N_R}},{N_R}} \right)< \varDelta \left( {C_A^{ * {N_R}},{N_R} + 1} \right) < \varDelta \left( {C_A^{ * {N_R}} - 1,{N_R}} \right) \end{aligned}$$
(A.28)

i) if \(\varDelta \left( {C_A^{ * {N_R}},{N_R} + 1} \right) > {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }}\), together with inequality (A.26), the optimal additional capacity under \({N_R}\) holds that \(C_A^{ * \left( {{N_R} + 1} \right) } = C_A^{ * {N_R}} + 1\), as Corollary 3;

ii) if \(\varDelta \left( {C_A^{ * {N_R}},{N_R} + 1} \right) < {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }}\), together with inequality (A.27), \(C_A^{ * \left( {{N_R} + 1} \right) } = C_A^{ * {N_R}}\).

(2) when \(C_A^{ * {N_R}} = 0\), \(\varDelta \left( {C_A^{ * {N_R}},{N_R}} \right) < {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }}\). It holds that \(\varDelta \left( {C_A^{ * {N_R}},{N_R} + 1} \right) > \varDelta \left( {C_A^{ * {N_R}},{N_R}} \right) \), and \(\varDelta \left( {C_A^{ * {N_R}} + 1,{N_R} + 1} \right)< \varDelta \left( {C_A^{ * {N_R}},}\right. \left. {{N_R}} \right) < {\gamma /{\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }}\).

i) if \(\varDelta \left( {C_A^{ * {N_R}},{N_R} + 1} \right) > {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }}\), together with inequality (A.26), \(C_A^{ * \left( {{N_R} + 1} \right) } = C_A^{ * {N_R}} + 1\);

ii) if \(\varDelta \left( {C_A^{ * {N_R}},{N_R} + 1} \right) < {\gamma / {\left( {1 - {\theta _O} + {\alpha _O} - \beta } \right) }}\), together with inequality (A.27), \(C_A^{ * \left( {{N_R} + 1} \right) } = C_A^{ * {N_R}}\).

In summary, \(C_A^{ * \left( {{N_R} + 1} \right) } \ge C_A^{ * {N_R}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Tang, J. & Yan, C. A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation. J Comb Optim 37, 150–182 (2019). https://doi.org/10.1007/s10878-017-0217-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0217-y

Keywords

Navigation