Journal of Combinatorial Optimization

, Volume 32, Issue 2, pp 639–644 | Cite as

A note on the duality between matchings and vertex covers in balanced hypergraphs

  • Robert Scheidweiler
  • Eberhard Triesch


We present a new Min-Max theorem for an optimization problem closely connected to matchings and vertex covers in balanced hypergraphs. The result generalizes Kőnig’s Theorem (Berge and Las Vergnas in Ann N Y Acad Sci 175:32–40, 1970; Fulkerson et al. in Math Progr Study 1:120–132, 1974) and Hall’s Theorem (Conforti et al. in Combinatorica 16:325–329, 1996) for balanced hypergraphs.


Matching Vertex cover Hypergraph Balanced hypergraph Duality Koenig’s Theorem Hall’s Theorem 


  1. Berge C (1970) Sur certains hypergraphes généralisant les graphes bipartites. Combin Theory Appl I 4:119–133MathSciNetMATHGoogle Scholar
  2. Berge C (1973) Notes sur les bonnes colorations d’un hypergraphe. colloque sur la théorie des graphes. Cahiers Centre Études Rech Opér 15:219–223MathSciNetMATHGoogle Scholar
  3. Berge C, Las Vergnas M (1970) Sur un théorème du type König pour hypergraphes. Ann N Y Acad Sci 175:32–40MathSciNetMATHGoogle Scholar
  4. Conforti M, Cornuéjols G, Kapoor A, Vušković K (1996) Perfect matchings in balanced hypergraphs. Combinatorica 16:325–329MathSciNetCrossRefMATHGoogle Scholar
  5. Fulkerson DR, Hoffman AJ, Oppenheim R (1974) On balanced matrices. Math Progr Study 1:120–132MathSciNetCrossRefMATHGoogle Scholar
  6. Huck A, Triesch E (2002) Perfect matchings in balanced hypergraphs—a combinatorial approach. Combinatorica 22:409–416MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Lehrstuhl II für MathematikRWTH AachenAachenGermany

Personalised recommendations