Construction of Novel Z-Scheme N-CQDs/Sn3O4 Heterojunction for Excellent Photocatalytic Degradation of Organic Pollutant

Abstract

The construction of heterojunction can improve the transfer and separation efficiency of photogenerated electron-hole pairs, which is conducive to the photocatalytic removal of pollutant. In this work, a novel Z-scheme N-CQDs (Nitrogen-doped carbon quantum dots)/Sn3O4 heterojunction was synthesized by a facile hydrothermal method. N-CQDs were evenly dispersed on the surface of Sn3O4, which is helpful for the formation of heterostructured interface between N-CQDs and Sn3O4. As-prepared N-CQDs/Sn3O4 heterojunctions exhibited superior visible light photocatalytic activity to pure Sn3O4 for the degradation of methyl orange (MO). Especially, the 1.25% N-CQDs/Sn3O4 sample displayed the optimal photocatalytic activity with a 78% removal efficiency of MO under visible light illumination for 80 min. The improvement of photocatalytic behavior could be mainly attributed to the formation of Z-scheme heterostructure between N-CQDs and Sn3O4 interfaces, which not only increases the photoinduced charges separation efficiency but also reserves the high energy electrons and high energy holes, as well as the higher specific surface area. Active species trapping experiments demonstrated that superoxide radical and holes are important active species during the photocatalytic degradation process. This work provides a novel insight into the design and synthesis of Sn3O4-based heterojunction for removal of organic pollutants.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    C. Li, Y. Ma, S. Zheng, C. Hu, F. Qin, L. Wei, C. Zhang, S. Duo, and Q. Hu (2020). J. Colloid Interface Sci. 576, 291–301.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    C. Zhang, Y. Ma, C. Li, F. Qin, C. Hu, Q. Hu, and S. Duo (2019). J. Mater. Sci. 55, 3181–3194.

    Article  CAS  Google Scholar 

  3. 3.

    C. Hu, S. Zheng, C. Lian, F. Chen, T. Lu, Q. Hu, S. Duo, R. Zhang, and C. Guan (2015). J. Mol. Catal. A-Chem. 396, 128–135.

    CAS  Article  Google Scholar 

  4. 4.

    X. Li, F. Chen, C. Lian, S. Zheng, Q. Hu, S. Duo, W. Li, and C. Hu (2016). J. Clust. Sci. 27, 1877–1892.

    CAS  Article  Google Scholar 

  5. 5.

    C. Hu, C. Lian, S. Zheng, X. Li, T. Lu, Q. Hu, S. Duo, R. Zhang, Y. Sun, and F. Chen (2016). J. Energy Chem. 25, 489–494.

    Article  Google Scholar 

  6. 6.

    X. Li, S. Zheng, C. Zhang, C. Hu, F. Chen, Y. Sun, S. Duo, R. Zhang, Q. Hu, W. Li, and Y. Kang (2017). Mol. Catal. 438, 55–65.

    CAS  Article  Google Scholar 

  7. 7.

    A. Rahmati and A. Farokhipour (2019). J. Clust. Sci. 30, 521–529.

    CAS  Article  Google Scholar 

  8. 8.

    J. Hou, D. Dai, R. Wei, X. Wu, X. Wang, M. Tahir, and J. Zou (2019). ACS Sustain. Chem. Eng. 7, 16569–16576.

    CAS  Article  Google Scholar 

  9. 9.

    W. An, W. Cui, Y. Liang, J. Hu, and L. Liu (2015). Appl. Surf. Sci. 351, 1131–1139.

    CAS  Article  Google Scholar 

  10. 10.

    Q. Liu, T. Chen, Y. Guo, Z. Zhang, and X. Fang (2016). Appl. Catal. B-Environ. 193, 248–258.

    CAS  Article  Google Scholar 

  11. 11.

    C. Zhang, X. Li, S. Zheng, Y. Ma, C. Hu, C. Li, S. Duo, and Q. Hu (2018). Colloid Surf. A-Physicochem. Eng. Asp. 548, 150–157.

    CAS  Article  Google Scholar 

  12. 12.

    Y. Ma, C. Zhang, C. Li, F. Qin, L. Wei, C. Hu, Q. Hu, and S. Duo (2019). Colloid Surf. A-Physicochem. Eng. Asp. 580, 123757.

    CAS  Article  Google Scholar 

  13. 13.

    X. Li, C. Zhang, C. Hu, L. Xu, Q. Hu, S. Duo, W. Li, and Y. Kang (2017). J. Clust. Sci. 28, 2409–2418.

    CAS  Article  Google Scholar 

  14. 14.

    M. Manikandan, T. Tanabe, P. Li, S. Ueda, G. Ramesh, R. Kodiyath, J. Wang, T. Hara, A. Dakshanamoorthy, S. Ishihara, K. Ariga, J. Ye, N. Umezawa, and H. Abe (2014). ACS Appl. Mater. Interfaces 6, 3790–3793.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Y. He, D. Li, J. Chen, Y. Shao, J. Xian, X. Zheng, and P. Wang (2014). RSC Adv. 4, 1266–1269.

    CAS  Article  Google Scholar 

  16. 16.

    X. Yu, L. Wang, J. Zhang, W. Guo, Z. Zhao, Y. Qin, X. Mou, A. Li, and H. Liu (2015). J. Mater. Chem. A 3, 19129–19136.

    CAS  Article  Google Scholar 

  17. 17.

    X. Yu, Z. Zhao, D. Sun, N. Ren, J. Yu, R. Yang, and H. Liu (2018). Appl. Catal. B-Environ. 227, 470–476.

    CAS  Article  Google Scholar 

  18. 18.

    S. Balgude, Y. Sethi, A. Gaikwad, B. Kale, D. Amalnerkar, and P. Adhyapak (2020). Nanoscale 12, 8502–8510.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    C. Li, S. Yu, H. Dong, C. Liu, H. Wu, H. Che, and G. Chen (2018). Appl. Catal. B-Environ. 238, 284–293.

    CAS  Article  Google Scholar 

  20. 20.

    W. Xia, H. Wang, X. Zeng, J. Han, J. Zhu, M. Zhou, and S. Wu (2014). CrystEngComm. 16, 6841–6847.

    CAS  Article  Google Scholar 

  21. 21.

    G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu (2015). Nanoscale. 7, 3117–3125.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    L. Xu, W.-Q. Chen, S.-Q. Ke, S.-M. Zhang, M. Zhu, Y. Zhang, W.-Y. Shi, S. Horike, and L. Tang (2020). Chem. Eng. J. 382, 122810.

    CAS  Article  Google Scholar 

  23. 23.

    F. Wang, Y. Wang, Y. Feng, Y. Zeng, Z. Xie, Q. Zhang, Y. Su, P. Chen, Y. Liu, K. Yao, W. Lv, and G. Liu (2018). Appl. Catal. B-Environ. 221, 510–520.

    CAS  Article  Google Scholar 

  24. 24.

    F. Wang, Y. Wu, Y. Wang, J. Li, X. Jin, Q. Zhang, R. Li, S. Yan, H. Liu, Y. Feng, G. Liu, and W. Lv (2019). Chem. Eng. J. 356, 857–868.

    CAS  Article  Google Scholar 

  25. 25.

    B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song, L. Hao, L. Wang, and Z. Guo (2017). Dalton Trans. 46, 15769–15777.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    D. Ni, Q. Shang, T. Guo, X. Wang, Y. Wu, H. Guan, D. Wang, and M. Zhang (2017). Appl. Catal. B-Environ. 210, 504–512.

    CAS  Article  Google Scholar 

  27. 27.

    C. Hu, R. Zhang, J. Xiang, T. Liu, W. Li, M. Li, S. Duo, and F. Wei (2011). J. Solid State Chem. 184, 1286–1292.

    CAS  Article  Google Scholar 

  28. 28.

    T. Lu, R. Zhang, C. Hu, F. Chen, S. Duo, and Q. Hu (2013). Phys. Chem. Chem. Phys. 15, 12963–12970.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    M. Sun, T. Yan, T. Wu, Y. He, Y. Shao, D. Wei, and B. Du (2018). Mater. Res. Bull. 103, 104–113.

    CAS  Article  Google Scholar 

  30. 30.

    X. Yu, Z. Zhao, N. Ren, J. Liu, D. Sun, L. Ding, and H. Liu (2018). Acs Sustain. Chem. Eng. 6, 11775–11782.

    CAS  Article  Google Scholar 

  31. 31.

    D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, and Z. Sun (2013). Nanoscale 5, 104–113.

    Google Scholar 

  32. 32.

    J. Di, J. Xia, Y. Ge, H. Li, H. Ji, H. Xu, Q. Zhang, H. Li, and M. Li (2015). Appl. Catal. B-Environ. 168, 51–61.

    Article  CAS  Google Scholar 

  33. 33.

    Y. Zhou, S. Yang, D. Fan, J. Reilly, H. Zhang, W. Yao, and J. Huang (2019). ACS Appl. Nano. Mater. 2, 1027–1032.

    CAS  Article  Google Scholar 

  34. 34.

    Q. Chen, Y. Wang, Y. Wang, X. Zhang, D. Duan, and C. Fan (2017). J. Colloid Interface Sci. 491, 238–245.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    C. Liu, X. Zhang, W. Li, Y. Yu, M. Liu, L. Wang, C. Li, X. Zhang, X. Li, and X. Lin (2020). Mater. Res. Bull. 122, 110640.

    CAS  Article  Google Scholar 

  36. 36.

    J. Di, J. Xia, M. Ji, L. Xu, S. Yin, Z. Chen, and H. Li (2016). J. Mater. Chem. A. 4, 5051–5061.

    CAS  Article  Google Scholar 

  37. 37.

    J. Wang, L. Tang, G. Zeng, Y. Deng, H. Dong, Y. Liu, L. Wang, B. Peng, C. Zhang, and F. Chen (2018). Appl. Catal. B-Environ. 222, 115–123.

    CAS  Article  Google Scholar 

  38. 38.

    S. Cailotto, R. Mazzaro, F. Enrichi, A. Vomiero, M. Selva, E. Cattaruzza, D. Cristofori, E. Amadio, and A. Perosa (2018). ACS Appl. Mater. Interfaces 10, 40560–40567.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    N. C. T. Martins, J. Ângelo, A. V. Girão, T. Trindade, L. Andrade, and A. Mendes (2016). Appl. Catal. B-Environ. 193, 67–74.

    CAS  Article  Google Scholar 

  40. 40.

    J. Zou, L. Wang, J. Luo, Y. Nie, Q. Xing, X. Luo, H. Du, S. Luo, and S. L. Suib (2016). Appl. Catal. B-Environ. 193, 103–109.

    CAS  Article  Google Scholar 

  41. 41.

    C. Li, Y. Ma, S. Zheng, C. Hu, F. Qin, L. Wei, C. Zhang, S. Duo, and Q. Hu (2020). J. Phys. Chem. Solids 140, 109376.

    CAS  Article  Google Scholar 

  42. 42.

    Z. Ren, X. Liu, H. Chu, H. Yu, Y. Xu, W. Zheng, W. Lei, P. Chen, J. Li, and C. Li (2017). J. Colloid Interface Sci. 488, 190–195.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    G. S. Jamila, S. Sajjad, S. A. K. Leghari, and M. Long (2020). J. Hazard. Mater. 382, 121087.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    X. Chen, Y. Huang, K. Zhang, X. Feng, and M. Wang (2018). Electrochim. Acta. 259, 131–142.

    CAS  Article  Google Scholar 

  45. 45.

    H. Song, S. Son, S. K. Kim, and G. Y. Jung (2015). Nano Res. 8, 3553–3561.

    CAS  Article  Google Scholar 

  46. 46.

    L. Tian, K. Xia, W. Hu, X. Zhong, Y. Chen, C. Yang, G. He, Y. Su, and L. Li (2017). Electrochim. Acta. 231, 190–199.

    CAS  Article  Google Scholar 

  47. 47.

    M. Tawfik, X. Tonnelliera, and C. Sansom (2018). Renew. Sust. Energ. Rev. 90, 802–813.

    Article  Google Scholar 

  48. 48.

    X. Yue, X. Miao, Z. Ji, X. Shen, H. Zhou, L. Kong, G. Zhu, X. Li, and S. Ali Shah (2018). J. Colloid Interface Sci. 531, 473–482.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks for the support of National Natural Science Foundation of China (No. 21663012), the Natural Science Foundation of Jiangxi Province (20181BAB203009), and Graduate Innovation Foundation of Jiangxi Science and Technology Normal University (No. YC2019-X10), P.R. China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Changyuan Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Ma, Y., Zheng, S. et al. Construction of Novel Z-Scheme N-CQDs/Sn3O4 Heterojunction for Excellent Photocatalytic Degradation of Organic Pollutant. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-02020-9

Download citation

Keywords

  • Sn3O4
  • N-CQDs
  • Heterojunction
  • Photocatalysis
  • Degradation