Nanoscaled Zinc Oxide Prepared by Mono-amino Acid Templated Assembly and Their Superior Biological Properties


Nanoscaled zinc oxide (ZnO) was synthesized via a benign mineralization reaction using mono-amino acid as templates. Characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy, it was found that the microstructure of as-prepared ZnO can be fine-tuned into olive-like and flake-like structures with leucine and histidine respectively. Otherwise, the photoluminescence (PL) results indicate that biomineralized ZnO nanoparticles show a potential application in the fields of optical devices. To further explore the biological performance of as-prepared ZnO nanoparticles, antibacterial activity tests against Staphylococcus aureus and Escherichia coli, and cytocompatibility on mouse MC3T3 cells were also investigated. The superior biological properties of these biomineralized ZnO together with their intrinsic photoluminescent properties open perspectives for the development of biomedical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    B. Boro, B. Gogoi, B. M. Rajbongshi, et al. (2018). Renew. Sustain. Energy Rev. 81(2), 2264.

    CAS  Article  Google Scholar 

  2. 2.

    J. Reinosa, C. M. Á. Docio, V. Z. Ramírez, et al. (2018). Ceram. Int. 44, 2827.

    CAS  Article  Google Scholar 

  3. 3.

    K. M. Lee, C. W. Lai, K. S. Ngai, et al. (2016). Water Res. 88, 428

    CAS  Article  Google Scholar 

  4. 4.

    Qingke, Tan, Zhen, et al. (2019) J. Colloid Interface Sci. 548, 233.

  5. 5.

    Qingke, Tan, Binghui Xu, et al. (2020) CrystEngComm 22, 320.

  6. 6.

    S. Hackenberg, A. Scherzed, A. Technau, et al. (2013). J. Biomed. Nanotechnol. 9(1), 86.

    CAS  Article  Google Scholar 

  7. 7.

    R. Kumar, A. Umar, G. Kumar, et al. (2017). Ceram. Int. 43(5), 3940.

    CAS  Article  Google Scholar 

  8. 8.

    P. Petkova, A. Francesko, I. Perelshtein, et al. (2016). Ultrason. Sonochem. 29, 244.

    CAS  Article  Google Scholar 

  9. 9.

    B. Gu, A. Pliss, A. N. Kuzmin, et al. (2016). Biomaterials 104, 78.

    CAS  Article  Google Scholar 

  10. 10.

    M. Laurenti, A. Lamberti, G. G. Genchi, et al. (2018). ACS Appl. Mater. Interfaces 11(1), 449.

    Article  Google Scholar 

  11. 11.

    H. Mirzaei and M. Darroudi (2017). Ceram Int. 43, 907.

    CAS  Google Scholar 

  12. 12.

    H. Fukui. Nanoparticle Technology Handbook, 3rd edn. (Elsevier, Amsterdam, 2018), pp. 845–857.

    Google Scholar 

  13. 13.

    M. Arakha, S. Jha. Interfacial Phenomena on Biological Membranes (Springer, New York, 2018), pp. 61–77.

    Google Scholar 

  14. 14.

    P. Swain, R. Das, A. Das, et al. (2019). Aquac.Nutr. 25(2), 486.

    CAS  Article  Google Scholar 

  15. 15.

    C. H. Sang, S. J. Chou, F. M. Pan, et al. (2016). Biosens. Bioelectron. 75(15), 285.

    CAS  Article  Google Scholar 

  16. 16.

    N. Padmavathy and R. Vijayaraghavan (2016). Sci.Technol. Adv. Mater. 9(3), 035004.

    Article  Google Scholar 

  17. 17.

    L. L. Hao, Y. Hu, Y. Zhang, et al. (2018). RSC Adv. 8, 27304.

    CAS  Article  Google Scholar 

  18. 18.

    B. Qiu, X. F. Xu, R. H. Deng, et al. (2019). Int. J. Biol. Macromol. 122(1), 842.

    Google Scholar 

  19. 19.

    V. Bui, D. Park, and Y. C. Lee (2017). Polymers 9(1), 21.

    Article  Google Scholar 

  20. 20.

    H. R. Ghaffarian, M. Saiedi, M. A. Sayyadnejad, et al. (2011). Iran. J. Chem. Chem. Eng. (IJCCE) 30(1), 1.

    CAS  Google Scholar 

  21. 21.

    Z. W. Pan, Z. R. Dai, and Z. L. Wang (2001). Science 291(5510), 1947.

    CAS  Article  Google Scholar 

  22. 22.

    G. Sico, M. Montanino, M. Ventre, et al. (2019). Scripta Mater. 164, 48.

    CAS  Article  Google Scholar 

  23. 23.

    H. R. Ghorbani, F. P. Mehr, H. Pazoki, et al. (2015). Orient. J. Chem. 31(2), 1219.

    CAS  Article  Google Scholar 

  24. 24.

    Weiner, Steve & Dove, Patricia. Biomineralization, 2003, 1–30.

  25. 25.

    C. Y. Chiu, Y. Li, L. Ruan, et al. (2011). Platinum nanocrystals selectively shaped using facet-specific peptide sequences[J]. Nature Chemistry 3 (5), 393–399.

    CAS  Article  Google Scholar 

  26. 26.

    C. L. Chen and N. Rosi (2010). Peptide-Based Methods for the Preparation of Nanostructured Inorganic Materials [J]. Angewandte Chemie International Edition 49 (11), 1924–1942.

    CAS  Article  Google Scholar 

  27. 27.

    D. Yan, G. Yin, Z. Huang, M. Yang, X. Liao, Y. Kang, Y. Yao, B. Hao, and D. Han (2009). Characterization and bacterial response of zinc oxide particles prepared by a biomineralization process [J]. Journal of Physical Chemistry B 113 (17), 6047–6053.

    CAS  Article  Google Scholar 

  28. 28.

    L. Chen, X. Xu, F. Cui, et al. (2018). Au nanoparticles-ZnO composite nanotubes using natural silk fibroin fiber as template for electrochemical non-enzymatic sensing of hydrogen peroxide[J]. Analytical biochemistry 554, 1–8.

    Article  Google Scholar 

  29. 29.

    M. Umetsu M, M. Mizuta, K. Tsumoto, S. Ohara, S. Takami, H. Watanabe, I. Kumagai, T. Adschiri, Bioassisted room-temperature immobilization and mineralization of zinc oxide-the structural ordering of ZnO nanoparticles into a flower-type morphology [J]. Advanced Materials, 2005, 17(21): 2571–2575.

  30. 30.

    E. Zabihi, A. Babaei, D. Shahrampour, et al. (2019). Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent[J]. International Journal of Biological Macromolecules 131, 107–116.

    CAS  Article  Google Scholar 

  31. 31.

    D. J. Wilkinson, T. Hossain, D. S. Hill, B. E. Phillips, H. Crossland, J. Williams, P. Loughna, T. A. Churchward-Venne, L. Breen, S. M. Phillips, T. Etheridge, J. A. Rathmacher, K. Smith, N. J. Szewczyk, and P. J. Atherton (2013). Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism [J]. Journal of Physiology 591 (11), 2911–2923.

    CAS  Article  Google Scholar 

  32. 32.

    D. Yan, G. Yin, Z. Huang, et al. (2009). Biomineralization of uniform gallium oxide rods with cellular compatibility [J]. Inorganic Chemistry 48 (14), 6471–6479.

    CAS  Article  Google Scholar 

  33. 33.

    P. J. Vandevord, H. W. Matthew, S. P. Desilva, et al. (2002). Evaluation of the biocompatibility of a chitosan scaffold in mice [J]. Journal of Biomedical Materials Research 59 (3), 585–590.

    CAS  Article  Google Scholar 

  34. 34.

    H. Cölfen, Biomineralization: a crystal-clear view [J]. Nature Materials, 2010(9)12: 960–961.

  35. 35.

    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Applied Physics Letters, 1996(68)3: 403–405.

  36. 36.

    D. C. Reynolds, D. C. Look, and B. Jogai (1999). Valence-band ordering in ZnO [J]. Physical Review B 60 (4), 2340–2344.

    CAS  Article  Google Scholar 

  37. 37.

    Marta M. Alves, Andrade S M, Grenho L, et al. Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications[J]. Materials Science and Engineering: C, 2019, (101):76–87.

  38. 38.

    T. Voss, R. Meyer, and W. Sommergruber (2010). Spectroscopic characterization of rhinoviral protease 2A: Zn is essential for the structural integrity [J]. Protein Science 4 (12), 2526–2531.

    Article  Google Scholar 

  39. 39.

    N. Abbaspour (2013). Zinc and its importance for human health: An integrative review[J]. Journal of Research in Medical sciences the Official Journal of Isfahan University of Medical sciences 18 (2), 144–157.

    Google Scholar 

  40. 40.

    Aiping Hui, Rui Yan, et al. Incorporation of quaternary ammonium chitooligosaccharides on ZnO/palygorskite nanocomposites for enhancing antibacterial activities.[J] Carbohydrate Polymers, 2020, (247):116685.

  41. 41.

    M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, et al. (2011). Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation [J]. Nanomedicine Nanotechnology Biology & Medicine 7 (2), 184–192.

    CAS  Article  Google Scholar 

  42. 42.

    R. Brayner, R. Ferrariiliou, N. Brivois, et al. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6 (4), 866–870.

    CAS  Article  Google Scholar 

  43. 43.

    L. Zhang, Y. Jiang, Y. Ding, et al. (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res. 12(5), 1625–1636.

Download references


This work was supported by the project of National Natural Science Foundation of China (No. 51701073), Natural Science Foundation of Hunan Province (No. 2018JJ3241), the Open Fund of the Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials and the Hunan Key Laboratory of crop germplasm innovation and resource utilization foundation of Hunan Agricultural University under Project No. 50262.

Author information



Corresponding author

Correspondence to Hui Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Sun, Z., Ruan, Y. et al. Nanoscaled Zinc Oxide Prepared by Mono-amino Acid Templated Assembly and Their Superior Biological Properties. J Clust Sci (2021).

Download citation


  • Zinc oxide
  • Mineralization
  • Nanoscaled materials
  • Optical properties
  • Biological properties