Design and Preparation of Silver–Copper Nanoalloys for Antibacterial Applications

Abstract

The search for new more effective nanoparticles based antimicrobial agents has been under way in recent decades. Silver nanoparticles are hydrophobic and have a negative charge. We report on the preparation of Ag–Cu bimetallic nanoparticles with various silver contents synthesized by electric explosion of two twisted wires of the metals in argon atmosphere. The method allows to obtain nanoparticles of a given composition, has high performance and scalability. Nanoparticles were investigated using X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive analysis and microelectrophoresis techniques. We evaluated the antibacterial activity of the nanoparticles against Gram-negative E. coli and Gram-positive methicillin resistance S. aureus MRSA. Our study showed that the synthesized nanoparticles have a positive zeta potential of about 30 mV at pH 7.2 and high antimicrobial activity against the tested bacteria strains, which is close to the activity of silver nanoparticles with a size of 20 nm. The high antimicrobial activity of the nanoparticles is due to the prolonged slow release of silver and copper ions, which makes nanoalloys more effective than Cu and Ag metallic nanoparticles. The synthesized nanoparticles have high antimicrobial activity and demonstrate the potential for their use as promising new generation antibacterial agents effective against resistant microorganisms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    B. Syed, N. Karthik, P. Bhat, N. Bisht, A. Prasad, S. Satish, and M. N. Prasad (2000). J. King Saud Univ. Sci.. https://doi.org/10.1016/j.jksus.2018.01.008.

    Article  Google Scholar 

  2. 2.

    X. Wang, R. Li, Z. Li, R. Xiao, X. B. Chen, and T. Zhang (2019). J. Mater. Chem.. https://doi.org/10.1039/C9TB00148D.

    Article  Google Scholar 

  3. 3.

    C. E. Shi, L. Pan, C. R. Wang, Y. He, Y. F. Wu, and S. S. Xue (2016). JOM. https://doi.org/10.1016/j.envpol.2008.10.002.

    Article  Google Scholar 

  4. 4.

    J. T. Lue (2001). J. Phys. Chem. Solid. https://doi.org/10.1016/S0022-3697(01)00099-3.

    Article  Google Scholar 

  5. 5.

    M. Auffan, J. Rose, M. R. Wiesner, and J. Y. Bottero (2009). Environ. Pollut.. https://doi.org/10.1016/j.envpol.2008.10.002.

    Article  PubMed  Google Scholar 

  6. 6.

    S. Shaikh, N. Nazam, S. M. D. Rizvi, K. Ahmad, M. H. Baig, E. J. Lee, and I. Choi (2019). Int. J. Mol. Sci.. https://doi.org/10.3390/ijms20102468.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    S.C. Sahu, A.W. Hayes Toxicol. Res. Appl. 1 2397847317726352(2017).

  8. 8.

    A. C. Burduşel, O. Gherasim, A. Grumezescu, L. Mogoantă, A. Ficai, and E. Andronescu (2018). Nanomaterials. https://doi.org/10.3390/nano8090681.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    S. Prabhu and E. K. Poulose (2012). Int. Nano Lett.. https://doi.org/10.1186/2228-5326-2-32.

    Article  Google Scholar 

  10. 10.

    I. Fratoddi (2018). Nanomaterials. https://doi.org/10.3390/nano8010011.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    M. Akter, M. T. Sikder, M. Rahman, A. A. Ullah, K. F. B. Hossian, S. Banik, T. Hosokawa, T. Saito, and M. Kurasaki (2018). J. Adv. Res.. https://doi.org/10.1016/j.jare.2017.10.008.

    Article  PubMed  Google Scholar 

  12. 12.

    A. Panáček, L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka, M. Šebela, R. Prucek, O. Tomanec, and R. Zbořil (2018). Nat. Nanotechnol.. https://doi.org/10.1038/s41565-017-0013-y.

    Article  PubMed  Google Scholar 

  13. 13.

    K. E. Alzahrani, A. A. Niazy, A. M. Alswieleh, R. Wahab, A. M. El-Toni, and H. S. Alghamdi (2018). Int. J. Nanomed.. https://doi.org/10.2147/IJN.S154218.

    Article  Google Scholar 

  14. 14.

    S. Mohammadi, N.H. Jazani, M. Kouhkan, L.A. Babaganjeh, Iran J Microbiol 10 (2018).

  15. 15.

    L. Yang, L. Chen, Y. C. Chen, L. Kang, J. Yu, Y. Wang, C. Lu, T. Mashimo, A. Yoshiasa, and C. H. Lin (2019). Colloid Surf.. https://doi.org/10.1016/j.colsurfb.2019.05.018.

    Article  Google Scholar 

  16. 16.

    E. Rivard, M. Trudeau, and K. Zaghib (2019). Materials. https://doi.org/10.3390/ma12121973.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    B. N. Mondal, S. Chabri, G. Sardar, D. N. Nath, and P. P. Chattopadhyay (2016). J. Magn. Magn. Mater.. https://doi.org/10.1016/j.jmmm.2016.03.084.

    Article  Google Scholar 

  18. 18.

    S. Li, T. Wei, M. Tang, F. Chai, F. Qu, and C. Wang (2018). Sensor Actuat.. https://doi.org/10.1016/j.snb.2017.08.159.

    Article  Google Scholar 

  19. 19.

    O. V. Bakina, E. A. Glazkova, N. V. Svarovskaya, N. G. Rodkevich, and M. I. Lerner (2019). Mater. Lett.. https://doi.org/10.1016/j.matlet.2019.01.105.

    Article  Google Scholar 

  20. 20.

    S. Patel, M. Konar, H. Sahoo, and G. Hota (2019). Nanotechnology. https://doi.org/10.1088/1361-6528/ab045d.

    Article  PubMed  Google Scholar 

  21. 21.

    M. Ashfaq, N. Verma, and S. Khan (2016). Mater. Sci. Eng.. https://doi.org/10.1016/j.msec.2015.10.079.

    Article  Google Scholar 

  22. 22.

    I. Ferreri, M. Henriques, J. T. M. De Hosson, A. Cavaleiro, and S. Carvalho (2016). Surf. Coat Technol.. https://doi.org/10.1016/j.surfcoat.2016.04.019.

    Article  Google Scholar 

  23. 23.

    C. E. Santo, E. W. Lam, C. G. Elowsky, D. Quaranta, D. W. Domaille, C. J. Chang, and G. Grass (2011). Bacterial killing by dry metallic copper surfaces. Appl. Environ. Microbiol.77, (3), 794–802. https://doi.org/10.1128/AEM.01599-10.

    CAS  Article  Google Scholar 

  24. 24.

    A. Kędziora, M. Speruda, E. Krzyżewska, J. Rybka, A. Łukowiak, and G. Bugla-Płoskońska (2018). Int. J. Mol. Sci.. https://doi.org/10.3390/ijms19020444.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park (2008). Appl. Environ. Microbiol.. https://doi.org/10.1128/AEM.02001-07.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    I. Matai, A. Sachdev, P. Dubey, S. U. Kumar, B. Bhushan, and P. Gopinath (2014). Colloid Surf.. https://doi.org/10.1016/j.colsurfb.2013.12.005.

    Article  Google Scholar 

Download references

Acknowledgements

The works has been performed with the support of the Russian Science Foundation, project No. 17-79-20382. Antibacterial activity of colloidal silver nanoparticles were studied in the framework of the Program of Fundamental Scientific Studies of the State Science Academies for 2013–2020 (Direction No. III.23.2.10).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olga Bakina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakina, O., Glazkova, E., Pervikov, A. et al. Design and Preparation of Silver–Copper Nanoalloys for Antibacterial Applications. J Clust Sci (2020). https://doi.org/10.1007/s10876-020-01844-1

Download citation

Keywords

  • Bimetallic nanoparticles
  • Antibacterial activity
  • Escherichia coli
  • MRSA