Bimetallic Fe–Ir and Trimetallic Fe–Ir–Au Carbonyl Clusters Containing Hydride and/or Phosphine Ligands: Syntheses, Structures and DFT Studies

Abstract

The reaction of [HFe4(CO)12(IrCOD)]2− (1) with CO at ambient conditions afforded [HFe4Ir(CO)14]2− (2), that, in turn, reacted with HBF4·Et2O affording [Fe4Ir(CO)15] (3). 1 reacted with a slight excess of PPh3 resulting in a mixture of [HFe2Ir2(CO)10(PPh3)2] (ca. 37%) (5) and [H2Fe3Ir(CO)10(PPh3)2] (ca. 63%) (6). 5 and 6 co-crystallized as their [NEt4][H1+xFe2+xIr2-x(CO)10(PPh3)2]·CH2Cl2 (x = 0.63) salt. The reaction of 1 with Au(PPh3)Cl afforded [Fe3Ir(CO)12(AuPPh3)]2− (7). The related hydride [HFe3Ir(CO)12]2− (9) was prepared from the reaction of [HFe4(CO)12]3− (8) with [Ir(COE)2Cl]2 (COE = cyclo-octene). For sake of comparison, [HFe3Co(CO)12]2− (10) was obtained from 8 and Co2(CO)8. All the new clusters have been fully characterized via IR, 1H,13C{1H} and 31P{1H} NMR spectroscopies and their structures determined by means of single crystal X-ray crystallography. Possible isomers have been investigated by DFT calculations.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    M. Bortoluzzi, I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, and S. Zacchini (2015). Organometallics34, 189.

    CAS  Google Scholar 

  2. 2.

    R. Della Pergola, L. Garlaschelli, F. Demartin, M. Manassero, N. Masciocchi, M. Sansoni, and A. Fumagalli (1989). J. Chem. Soc. Dalton Trans. 1109.

  3. 3.

    W. L. Gladfelter and G. L. Geoffrey (1980). Adv. Organomet. Chem.18, 207.

    CAS  Google Scholar 

  4. 4.

    R. Della Pergola, L. Garlaschelli, F. Demartin, M. Manassero, N. Masciocchi, and G. Longoni (1988). J. Chem. Soc. Dalton Trans. 201.

  5. 5.

    R. Della Pergola, L. Garlaschelli, F. Demartin, M. Manassero, N. Masciocchi, and M. Sansoni (1990). J. Chem. Soc. Dalton Trans. 127.

  6. 6.

    A. Ceriotti, R. Della Pergola, L. Garlaschelli, F. Laschi, M. Manassero, N. Masciocchi, M. Sansoni, and P. Zanello (1991). Inorg. Chem.30, 3349.

    CAS  Google Scholar 

  7. 7.

    R. Della Pergola, A. Ceriotti, L. Garlascelli, F. Demartin, M. Manassero, N. Masciocchi, and M. Sansoni (1993). Inorg. Chem.32, 3277.

    CAS  Google Scholar 

  8. 8.

    E. Guggolz, M. L. Ziegler, W. Kalcher, J. Plank, D. Riedel, and W. A. Hermann (1981). Z. Naturforsch. B36, 1053.

    Google Scholar 

  9. 9.

    J. Chen, L. M. Daniels, and R. J. Angelici (1991). J. Am. Chem. Soc.113, 2544.

    CAS  Google Scholar 

  10. 10.

    R. Della Pergola, L. Garlaschelli, M. Manassero, C. Manassero, A. Sironi, D. Strumolo, S. Fedi, E. Grigiotti, and P. Zanello (2009). Inorg. Chim. Acta362, 331.

    CAS  Google Scholar 

  11. 11.

    M. I. Bruce, G. A. Koutsantonis, and E. R. T. Tienkink (1991). J. Organomet. Chem.408, 77.

    CAS  Google Scholar 

  12. 12.

    M. I. Bruce, G. A. Koutsantonis, and E. R. T. Tienkink (1991). J. Organomet. Chem.407, 391.

    CAS  Google Scholar 

  13. 13.

    A. Franken, T. D. McGrath, and F. G. A. Stone (2008). Organometallics27, 148.

    CAS  Google Scholar 

  14. 14.

    M. I. Bruce, P. E. Corbin, P. A. Humphrey, G. A. Koutsantonis, M. J. Liddel, and E. R. T. Tiekink (1990). Chem. Commun. 674.

  15. 15.

    J. W. Lauher and K. Wald (1981). J. Am. Chem. Soc.103, 7648.

    CAS  Google Scholar 

  16. 16.

    P. Braunstein, J. Rosé, Y. Dusausoy, and J.-P. Mangeot (1982). C. R. Chim.294, 967.

    CAS  Google Scholar 

  17. 17.

    X. Li, B. Kiran, and L.-S. Wang (2005). J. Phys. Chem. A109, 4366.

    CAS  PubMed  Google Scholar 

  18. 18.

    R. Hoffmann (1982). Angew. Chem. Int. Ed.21, 711.

    Google Scholar 

  19. 19.

    D. M. P. Mingos (1984). Gold Bull.17, 5.

    CAS  Google Scholar 

  20. 20.

    P. Braunstein and J. Rosé (1985). Gold Bull.18, 17.

    CAS  Google Scholar 

  21. 21.

    I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, A. Ienco, G. Longoni, G. Manca, and S. Zacchini (2014). Inorg. Chem.53, 9761.

    CAS  PubMed  Google Scholar 

  22. 22.

    H. Schmidbaur and A. Schier (2012). Chem. Soc. Rev.41, 370.

    CAS  PubMed  Google Scholar 

  23. 23.

    P. Pyykkö (1997). Chem. Rev.97, 597.

    PubMed  Google Scholar 

  24. 24.

    H. Schmidbaur and A. Schier (2008). Chem. Soc. Rev.37, 1932.

    Google Scholar 

  25. 25.

    P. Pyykkö (2008). Chem. Soc. Rev.37, 1967.

    PubMed  Google Scholar 

  26. 26.

    S. Sculfort and P. Braunstein (2011). Chem. Soc. Rev.40, 2741.

    CAS  PubMed  Google Scholar 

  27. 27.

    M. Bortoluzzi, I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, G. Longoni, and S. Zacchini (2014). Angew. Chem. Int. Ed.53, 7233.

    CAS  Google Scholar 

  28. 28.

    M. Bortoluzzi, I. Ciabatti, C. Cesari, C. Femoni, M. C. Iapalucci, and S. Zacchini (2017). Eur. J. Inorg. Chem. 3135.

  29. 29.

    M. Bortoluzzi, C. Cesari, I. Ciabatti, C. Femoni, M. Haytifar, M. C. Iapalucci, R. Mazzoni, and S. Zacchini (2017). J. Clust. Sci.28, 703.

    CAS  Google Scholar 

  30. 30.

    I. Ciabatti, C. Femoni, M. C. Iapalucci, S. Ruggieri, and S. Zacchini (2018). Coord. Chem. Rev.355, 27.

    CAS  Google Scholar 

  31. 31.

    B. Berti, M. Bortoluzzi, C. Cesari, C. Femoni, M. C. Iapalucci, R. Mazzoni, F. Vacca, and S. Zacchini (2019). Inorg. Chem.58, 2911.

    CAS  PubMed  Google Scholar 

  32. 32.

    B. Berti, M. Bortoluzzi, C. Cesari, C. Femoni, M. C. Iapalucci, R. Mazzoni, F. Vacca, and S. Zacchini (2019). Eur. J. Inorg. Chem. 3084.

  33. 33.

    B. Berti, M. Bortoluzzi, C. Cesari, C. Femoni, M. C. Iapalucci, R. Mazzoni, F. Vacca, and S. Zacchini (2020). Inorg. Chem.59, 2228.

    PubMed  Google Scholar 

  34. 34.

    M. Bortoluzzi, A. Ceriotti, C. Cesari, I. Ciabatti, R. Della Pergola, C. Femoni, M. C. Iapalucci, A. Storione, and S. Zacchini (2016). Eur. J. Inorg. Chem. 3939.

  35. 35.

    C. Cesari, I. Ciabatti, C. Femoni, M. C. Iapalucci, F. Mancini, and S. Zacchini (2017). Inorg. Chem.2017, 1655.

    Google Scholar 

  36. 36.

    B. Berti, C. Cesari, F. Conte, I. Ciabatti, C. Femoni, M. C. Iapalucci, F. Vacca, and S. Zacchini (2018). Inorg. Chem.2018, 7578.

    Google Scholar 

  37. 37.

    M. Bortoluzzi, C. Cesari, I. Ciabatti, C. Femoni, M. C. Iapalucci, and S. Zacchini (2017). Inorg. Chem.56, 6532.

    CAS  PubMed  Google Scholar 

  38. 38.

    R. D. Adams and B. Captain (2004). J. Organomet. Chem.689, 4521.

    CAS  Google Scholar 

  39. 39.

    R. D. Adams and F. A. Cotton (eds.) Catalysis by Di- and Polynuclear Metal Cluster Complexes (Wiley-VCH, New York, 1998).

    Google Scholar 

  40. 40.

    J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, and P. A. Midgley (2003). Acc. Chem. Res.36, 20.

    CAS  PubMed  Google Scholar 

  41. 41.

    B. F. G. Johnson (2003). Top. Catal.24, 147.

    CAS  Google Scholar 

  42. 42.

    S. Hermans, R. Raja, J. M. Thomas, B. F. G. Johnson, G. Sankar, and D. Gleeson (2001). Angew. Chem. Int. Ed.40, 1211.

    CAS  Google Scholar 

  43. 43.

    R. D. Adams and E. Trufan (2010). Philos. Trans. R. Soc. A368, 1473.

    CAS  Google Scholar 

  44. 44.

    S. Zacchini (2011). Eur. J. Inorg. Chem. 4125.

  45. 45.

    D. S. Shephard, T. Maschmeyer, G. Sankar, J. M. Thomas, D. Ozkaya, B. F. G. Johnson, R. Raja, R. D. Oldroyd, and R. G. Bell (1998). Chem. Eur. J.4, 1214.

    CAS  Google Scholar 

  46. 46.

    R. D. Adams, D. A. Blom, B. Captain, R. Raja, J. M. Thomas, and E. Trufan (2008). Langmuir24, 9223.

    CAS  PubMed  Google Scholar 

  47. 47.

    R. Bonelli, S. Albonetti, V. Morandi, L. Ortolani, P. M. Riccobene, S. Scirè, and S. Zacchini (2011). Appl. Catal A395, 10.

    CAS  Google Scholar 

  48. 48.

    R. Bonelli, C. Lucarelli, T. Pasini, L. F. Liotta, S. Zacchini, and S. Albonetti (2011). Appl. Catal A400, 54.

    CAS  Google Scholar 

  49. 49.

    D. Bonincontro, A. Lolli, A. Storione, A. Gasparotto, B. Berti, S. Zacchini, N. Dimitratos, and S. Albonetti (2019). Appl. Catal A588, 117279.

    Google Scholar 

  50. 50.

    F. Schweyer-Tihay, C. Estournès, P. Braunstein, J. Guille, J. L. Paillaud, M. Richard-Plouet, and J. Rosé (2006). Phys. Chem. Chem. Phys.8, 4018.

    CAS  PubMed  Google Scholar 

  51. 51.

    S. Marengo, R. Psaro, C. Dossi, S. Calmotti, and R. Della Pergola (1996). Stud. Surf. Sci. Catal.101, 1411.

    CAS  Google Scholar 

  52. 52.

    R. Ugi, C. Dossi, and R. Psaro (1996). J. Mol. Catal. A107, 13.

    Google Scholar 

  53. 53.

    T. Kimura, A. Fukuoka, A. Fumagalli, and M. Ichikawa (1989). Catal. Lett.2, 227.

    CAS  Google Scholar 

  54. 54.

    T. Venäläinen, E. Iiskola, J. Pursianen, T. A. Pakkanen, and T. T. Pakkanen (1986). J. Mol. Catal.34, 293.

    Google Scholar 

  55. 55.

    A. Fukuoka, T. Kimura, N. Kusogi, H. Kuroda, Y. Minai, Y. Sakai, T. Tominaga, and M. Ichikawa (1990). J. Catal.126, 434.

    CAS  Google Scholar 

  56. 56.

    A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, and R. Taylor (1989). J. Chem. Soc., Dalton Trans. S1.

  57. 57.

    C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2011). Dalton Trans.40, 8685.

    CAS  PubMed  Google Scholar 

  58. 58.

    S. M. Owen (1988). Polyhedron7, 253.

    CAS  Google Scholar 

  59. 59.

    D. M. P. Mingos and R. L. Johnson (1987). Struct. Bond.68, 29.

    CAS  Google Scholar 

  60. 60.

    A. Ceriotti, M. Daghetta, S. El Afefey, A. Ienco, G. Longoni, G. Manca, C. Mealli, S. Zacchini, and S. Zarra (2011). Inorg. Chem.50, 12553.

    CAS  PubMed  Google Scholar 

  61. 61.

    K. C. C. Kharas and L. F. Dahl (1988). Adv. Chem. Phys.70, 1.

    Google Scholar 

  62. 62.

    R. D. Adams and M. Chen (2011). Inorg. Chem.30, 5867.

    CAS  Google Scholar 

  63. 63.

    R. Della Pergola, L. Garlaschelli, M. Manassero, M. Sansoni, and S. Strumolo (2001). J. Clust. Sci.12, 23.

    CAS  Google Scholar 

  64. 64.

    R. D. Adams and M. Chen (2012). Organometallics31, 445.

    CAS  Google Scholar 

  65. 65.

    D. F. Shriver, H. D. Kaesz and R. D. Adams (eds.) The Chemistry of Metal Cluster Complexes (VCH, New York, 1990).

    Google Scholar 

  66. 66.

    G. Longoni, P. Chini, L. D. Lower, and L. F. Dahl (1975). J. Am. Chem. Soc.97, 5034.

    CAS  Google Scholar 

  67. 67.

    A. Fumagalli, T. F. Koetzle, F. Takusagawa, P. Chini, S. Martinenfo, and B. T. Heaton (1980). J. Am. Chem. Soc.102, 1740.

    CAS  Google Scholar 

  68. 68.

    A. Fumagalli, T. F. Koetzle, and F. Takusagawa (1981). J. Organomet. Chem.213, 365.

    CAS  Google Scholar 

  69. 69.

    A. Fumagalli and G. Ciani (1984). J. Organomet. Chem.272, 91.

    CAS  Google Scholar 

  70. 70.

    P. Braunstein, J. Rosé, A. Dedieu, Y. Dusausoy, J.-P. Mangeot, A. Tiripicchio, and M. Tiripicchio-Camellini (1986). J. Chem. Soc. Dalton Trans. 225.

  71. 71.

    R. Della Pergola, L. Garlaschelli, F. Demartin, M. Manassero, N. Masciocchi, and G. Longoni (1988). J. Organomet. Chem.352, C59.

    CAS  Google Scholar 

  72. 72.

    C. Femoni, M. C. Iapalucci, G. Longoni, S. Zacchini, and S. Zarra (2009). Inorg. Chem.48, 1599.

    CAS  PubMed  Google Scholar 

  73. 73.

    C. Kowala and J. M. Swan (1966). Aust. J. Chem.19, 547.

    CAS  Google Scholar 

  74. 74.

    J. L. Herde, J. C. Lambert, and C. V. Senoff (1974). Inorg. Synth.15, 18.

    CAS  Google Scholar 

  75. 75.

    E. Keller. SCHAKAL99 (University of Freiburg, Freiburg, 1999).

  76. 76.

    G. M. SheldrickSADABS-2008/1Bruker AXS Area Detector Scaling ans Absorption Correction (Bruker AXS, Madison, 2008).

  77. 77.

    G. M. Sheldrick (2015). Acta Crystallogr. Sect. C71, 3.

    Google Scholar 

  78. 78.

    H. D. Flack (1983). Acta Crystallogr. Sect. A39, 876.

    Google Scholar 

  79. 79.

    S. Grimme, J. G. Brandenburg, C. Bannwarth, and A. Hansen (2015). J. Chem. Phys.143, 054107.

    PubMed  Google Scholar 

  80. 80.

    F. Neese (2012). WIREs Comput. Mol. Sci.2, 73.

    CAS  Google Scholar 

  81. 81.

    F. Neese (2018). WIREs Comput. Mol. Sci.8, e1327.

    Google Scholar 

  82. 82.

    T. Lu and F. Chen (2012). J. Comput. Chem.33, 580.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Zacchini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berti, B., Bortoluzzi, M., Cesari, C. et al. Bimetallic Fe–Ir and Trimetallic Fe–Ir–Au Carbonyl Clusters Containing Hydride and/or Phosphine Ligands: Syntheses, Structures and DFT Studies. J Clust Sci (2020). https://doi.org/10.1007/s10876-020-01839-y

Download citation

Keywords

  • Heterometallic cluster
  • Carbonyl
  • Iron
  • Iridium
  • Hydride