Two Types of {FeDy} Heterometallic Complexes Containing Fe4 Structure: Carboxylate Derivatives Effect on the Structures and Magnetic Properties


We successfully obtained two type of heterometallic complexes [Fe4Dy2(L1)2(µ4-O)2(piv)4(H2O)2(NO3)4]·CH3CN·CH3OH (1) and [Fe6Dy2(L1)2(µ4-O)2(CH3COO)6(OH)2(H2O)2(NO3)6]·CH3CN (2) by using 2,2′-((2-((2-hydroxyethyl)amino)cyclohexyl)azanediyl)bis(ethan-1-ol) (H3L1), Dy(NO3)3·6H2O, FeCl3 and pivalic acid (piv) or acetic acid under room temperature in different solvent. Crystal structure showed that the central structure of [\({{\text{Fe}}}_{4}^{{\text{III}}}\)(µ4-O)2]8+ arranged in what was often termed an absent cubic shape, although here the Fe centers were strictly coplanar. Each Fe3 triangle was connected to the capping Dy(III) through µ4-O bridges for complex 1, and each Fe3 triangle was connected to the capping Fe(III) through µ4-O bridges for complex 2. It might be due to the steric effect that the coordination atoms of piv ligands chelated and blocked the structure. AC magnetic susceptibilities exhibited that complex 1 and 2 showed out-of-phase (χ″) component of ac-susceptibilities at zero Oe static magnetic field over the frequency range of 9–999 Hz, which energy barriers were 0.44 and 0.13 K. And their energy barriers were 1.2 and 12.2 K at applied 1000 Oe static magnetic field.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    D. F. Albiol, T. A. O’Brien, W. Wernsdorfer, B. Moulton, M. J. Zaworotko, K. A. Abboud, and G. Christou (2005). Angew. Chem. Int. Ed. 44, 897.

    Article  Google Scholar 

  2. 2.

    L. M. Wittick, L. F. Jones, P. Jensen, B. Moubaraki, L. Spiccia, K. J. Berry, and K. S. Murray (2006). Dalton Trans. 12, 1534.

    Article  Google Scholar 

  3. 3.

    V. G. Makhankova, O. Y. Vassilyeva, V. N. Kokozay, J. Reedijk, G. A. van Albada, J. Jezierska, and B. W. Skelton (2002). Eur. J. Inorg. Chem 2002, 2163.

    Article  Google Scholar 

  4. 4.

    E. A. Buvaylo, V. N. Kokozay, O Yu Vassilyeva, B. W. Skelton, I. L. Eremenko, J. Jezierska, and A. Ozarowski (2009). Inorg. Chem. 48, 11092.

    CAS  Article  Google Scholar 

  5. 5.

    R. W. Saalfrank, R. Prakash, H. Maid, F. Hampel, F. W. Heinemann, A. X. Trautwein, and L. H. Böttger (2006). Chem. Eur. J. 12, 2428.

    CAS  Article  Google Scholar 

  6. 6.

    A. Scheurer, K. Gieb, M. S. Alam, F. W. Heinemann, R. W. Saalfrank, W. Kroener, K. Petukhov, M. Stocker, and P. Müller (2012). Dalton Trans. 41, 3553.

    CAS  Article  Google Scholar 

  7. 7.

    R. W. Saalfrank, C. Deutscher, H. Maid, A. M. Ako, S. Sperner, T. Nakajima, W. Bauer, F. Hampel, B. A. Hess, N. J. R. Van, R. Eikema Hommes, R. Puchta, and F. W. Heinemann (2004). Chem. Eur. J. 10, 1899.

    CAS  Article  Google Scholar 

  8. 8.

    R. W. Saalfrank, C. Deutscher, S. Sperner, T. Nakajima, A. M. Ako, E. Uller, F. Hampel, and F. W. Heinemann (2004). Inorg. Chem. 43, 4372.

    CAS  Article  Google Scholar 

  9. 9.

    J. C. Ang, Y. Mulyana, C. Ritchie, R. Clerac, and C. Boskovic (2009). Aust. J. Chem. 62, 1124.

    CAS  Article  Google Scholar 

  10. 10.

    E. M. Rumberger, S. J. Shah, C. C. Beedle, L. N. Zakharov, A. L. Rheingold, and D. N. Hendrickson (2005). Inorg. Chem. 44, 2742.

    CAS  Article  Google Scholar 

  11. 11.

    F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, and R. A. Layfield (2018). Science 362, 1400.

    CAS  Article  Google Scholar 

  12. 12.

    C. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton, and D. P. Mills (2017). Nature 548, 439.

    CAS  Article  Google Scholar 

  13. 13.

    L. Ungur, S.-Y. Lin, J. Tang, and L. F. Chibotaru (2014). Chem. Soc. Rev. 43, 6894.

    CAS  Article  Google Scholar 

  14. 14.

    J.-L. Liu, Y.-C. Chen, and M.-L. Tong (2018). Chem. Soc. Rev. 47, 2431.

    CAS  Article  Google Scholar 

  15. 15.

    K. Liu, W. Shi, and P. Cheng (2015). Coordin. Chem. Rev. 289–290, 74.

    Article  Google Scholar 

  16. 16.

    J.-L. Liu, W.-Q. Lin, Y.-C. Chen, J.-D. Leng, F.-S. Guo, and M.-L. Tong (2012). Inorg. Chem. 52, 457.

    Article  Google Scholar 

  17. 17.

    H. L. C. Feltham, R. Clérac, L. Ungur, L. F. Chibotaru, A. K. Powell, and S. Brooker (2013). Inorg. Chem. 52, 3236.

    CAS  Article  Google Scholar 

  18. 18.

    R. Sessoli and A. K. Powell (2009). Coord. Chem. Rev. 253, 2328.

    CAS  Article  Google Scholar 

  19. 19.

    S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, and J. Mrozinski (2004). J. Am. Chem. Soc. 126, 420.

    CAS  Article  Google Scholar 

  20. 20.

    N. F. Chilton, S. K. Langley, B. Moubaraki, and K. S. Murray (2010). Chem. Commun. 46, 7787.

    CAS  Article  Google Scholar 

  21. 21.

    V. Mereacre, D. Prodius, Y. Lan, C. Turta, C. E. Anson, and A. K. Powell (2011). Chem. Eur. J. 17, 123.

    CAS  Article  Google Scholar 

  22. 22.

    M. N. Akhtar, V. Mereacre, G. Novitchi, J.-P. Tuchagues, Christopher E. Anson, and A. K. Powell (2009). Chem. Eur. J. 15, 7278.

    CAS  Article  Google Scholar 

  23. 23.

    C. Benelli and D. Gatteschi (2002). Chem. Rev. 102, 2369.

    CAS  Article  Google Scholar 

  24. 24.

    D. Gatteschi, R. Sessoli, and J. Villain Molecular Nanomagnets (Oxford University Press, Oxford, 2006).

    Google Scholar 

  25. 25.

    G. M. Sheldrick (2015). Acta Crystallogr. Sect. C Struct. Chem. 71, 3.

    Article  Google Scholar 

  26. 26.

    Y. Yan, Y. Hu, G. P. Zhao, and X. M. Kou (2008). Dyes. Pigm. 79, 210.

    CAS  Article  Google Scholar 

Download references


This work is supported by the Special Fund for Outstanding Youth Cultivation of Henan Academy of Sciences (No. 190403004).

Author information



Corresponding author

Correspondence to Liu Yang.

Ethics declarations

Conflict of interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1453 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, FW., Chen, HT., Li, DJ. et al. Two Types of {FeDy} Heterometallic Complexes Containing Fe4 Structure: Carboxylate Derivatives Effect on the Structures and Magnetic Properties. J Clust Sci 32, 461–467 (2021).

Download citation


  • Heterometallic complex
  • Fe4 structure
  • Different nuclear
  • Single-molecule magnet
  • Carboxylate derivatives