High-Nuclearity Silver-alkynyl Cluster Encapsulating Two Carbonates Generated from Atmospheric Carbon Dioxide Fixation and Co-protected by Diphenylphosphinate Ligands

Abstract

For investigating the template effects and the ligand roles in constructing structurally charming silver clusters, we isolated and analyzed a new cluster compound, namely, [(CO3)2@Ag25(C≡CtBu)15(CF3CO2)3(Ph2PO2)2I],1. We report here the synthesis, crystal structure, characterization by various spectroscopic (IR, solid-state NMR, XPS) techniques and the luminescent property of this cluster. Its X-ray crystal structure reveals that the cluster is a 25-nuclearity silver cage with double CO32− ions encapsulated in. Two diphenylphosphinates in new coordination mode (μ2:O1,O1) are co-protecting on the surface of cluster 1. Also, the cluster emits orange-red light in the solid-state at 77 K.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Z. Wang, R. K. Gupta, G. Luo, and D. Sun (2019). Chem. Rec. https://doi.org/10.1002/tcr.201900049.

    Article  PubMed  Google Scholar 

  2. 2.

    A. K. Gupta and A. Orthaber (2018). Chem. Eur. J. 24, 7536–7559.

    CAS  PubMed  Google Scholar 

  3. 3.

    Y. Xie, J. Jin, G. Duan, X. Lu, and T. C. W. Mak (2017). Coord. Chem. Rev. 331, 54–72.

    CAS  Google Scholar 

  4. 4.

    G. Luo, Z. Wang, L. P. Cheng, Q. Q. Zhao, X. P. Wang, and D. Sun (2017). Sci. Sin. Chim. 47, 695–704.

    Google Scholar 

  5. 5.

    Z. Lei, X. Wan, S. F. Yuan, J. Wang, and Q. M. Wang (2017). Dalton Trans. 46, 3427–3434.

    CAS  PubMed  Google Scholar 

  6. 6.

    Q.-M. Wang, Y.-M. Lin, and K.-G. Liu (2015). Acc. Chem. Rev. 48, 1570–1579.

    CAS  Google Scholar 

  7. 7.

    R. A. J. O’Hair (2019). Aust. J. Chem. 72, 923–926.

    Google Scholar 

  8. 8.

    H. Schmidbaur and A. Schier (2015). Angew. Chem. Int. Ed. 54, 746–784.

    CAS  Google Scholar 

  9. 9.

    J.-Y. Wang, K.-G. Liu, Z.-J. Guan, Z.-A. Nan, Y.-M. Lin, and Q.-M. Wang (2016). Inorg. Chem. 55, 6833–6835.

    CAS  PubMed  Google Scholar 

  10. 10.

    J.-Z. Li, F. Bigdeli, X.-M. Gao, R. Wang, X.-W. Wei, X.-W. Yan, M.-L. Hu, K.-G. Liu, and A. Morsali (2019). Inorg. Chem. 58, 5397–5400.

    CAS  PubMed  Google Scholar 

  11. 11.

    K.-G. Liu, X.-Y. Liu, Z.-J. Guan, K. Shi, Y.-M. Lin, and Q.-M. Wang (2016). Chem. Commun. 52, 3801–3804.

    CAS  Google Scholar 

  12. 12.

    K.-G. Liu, S.-K. Chen, Y.-M. Lin, and Q.-M. Wang (2015). Chem. Commun. 51, 9896–9898.

    CAS  Google Scholar 

  13. 13.

    S.-D. Bian, H.-B. Wu, and Q.-M. Wang (2009). Angew. Chem. Int. Ed. 48, 5363–5365.

    CAS  Google Scholar 

  14. 14.

    B. Li, J. Liao, Y. Li, and C. W. Liu (2013). Cryst. Eng. Comm. 15, 6140–6143.

    CAS  Google Scholar 

  15. 15.

    S. C. K. Hau, P. Cheng, and T. C. W. Mak (2014). Organometallics 33, 3231–3234.

    CAS  Google Scholar 

  16. 16.

    J. Qiao, K. Shi, and Q.-M. Wang (2010). Angew. Chem. Int. Ed. 49, 1765–1767.

    CAS  Google Scholar 

  17. 17.

    Y. Li, F. Gao, J. E. Beves, Y. Li, and J. Zuo (2013). Chem. Commun. 49, 3658–3660.

    CAS  Google Scholar 

  18. 18.

    Z.-G. Jiang, K. Shi, Y.-M. Lin, and Q.-M. Wang (2014). Chem. Commun. 50, 2353–2355.

    CAS  Google Scholar 

  19. 19.

    D. B. Dell’Amico, F. Calderazzo, L. Labella, F. Marchetti, and G. Pampaloni (2003). Chem. Rev. 103, 3857–3898.

    PubMed  Google Scholar 

  20. 20.

    J. Shi, X. Gao, Y. Feng, K. Zhou, J. Ji, and Y. Bi (2019). Inorg. Chim. Acta 497, 119107.

    CAS  Google Scholar 

  21. 21.

    S. D. Bian, J. H. Jia, and Q. M. Wang (2009). J. Am. Chem. Soc. 131, 3422–3423.

    CAS  PubMed  Google Scholar 

  22. 22.

    F. Gruber and M. Jansen (2010). Angew. Chem. Int. Ed. 49, 4924–4926.

    CAS  Google Scholar 

  23. 23.

    D. Sun, H. Wang, H. Lu, S. Feng, Z. Zhang, G. Sun, and D.-F. Sun (2013). Dalton Trans. 42, 6281–6284.

    CAS  PubMed  Google Scholar 

  24. 24.

    K. Zhou, C. Qin, X. Wang, K. Shao, L. Yan, and Z. M. Su (2014). Cryst. Eng. Comm. 16, 7860–7864.

    CAS  Google Scholar 

  25. 25.

    Z. Wang, X. Li, L. Liu, S. Yu, Z. Feng, C. Tung, and D. Sun (2016). Chem. Eur. J. 22, 6830–6836.

    CAS  PubMed  Google Scholar 

  26. 26.

    P. Liao, K. Liu, C. Fang, Y. Wu, and C. W. Liu (2019). J. Cluster Sci. 30, 1185–1193.

    CAS  Google Scholar 

  27. 27.

    K.-G. Liu, X.-W. Wei, F. Bigdeli, X.-M. Gao, J.-Z. Li, X.-W. Yan, M.-L. Hu, and A. Morsali (2020). Inorg. Chem. 59, 2248–2254.

    CAS  PubMed  Google Scholar 

  28. 28.

    C. E. Housecroft (1994). Coord. Chem. Rev. 131, 1–43.

    CAS  Google Scholar 

  29. 29.

    X.-J. Zou, S. Jin, and W.-J. Du (2017). Nanoscale 9, 16800–16805.

    CAS  PubMed  Google Scholar 

  30. 30.

    M. S. Bootharaju, R. Dey, L. E. Gevers, M. N. Hedhili, J. M. Basset, and O. M. Bakr (2016). J. Am. Chem. Soc. 138, 13770–13773.

    CAS  PubMed  Google Scholar 

  31. 31.

    Z. Han, X. Dong, P. Luo, S. Li, Z. Wang, S. Zang, and T. C. W. Mak (2020). Sci. Adv. 6, eaay0107.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Z. Wang, H.-F. Su, Y.-Z. Tan, S. Schein, S.-C. Lin, W. Liu, S.-A. Wang, W.-G. Wang, C.-H. Tung, D. Sun, and L.-S. Zheng (2017). Proc. Natl. Acad. Sci. 114, 12132–12137.

    CAS  PubMed  Google Scholar 

  33. 33.

    Z. Wang, H.-F. Su, M. Kurmoo, C.-H. Tung, D. Sun, and L.-S. Zheng (2018). Nat. Commun. 9, 2094.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Z. Wang, H.-F. Su, C.-H. Tung, D. Sun, and L.-S. Zheng (2018). Nat. Commun. 9, 4407.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    J.-W. Liu, L. Feng, H.-F. Su, Z. Wang, Q.-Q. Zhao, X.-P. Wang, C.-H. Tung, D. Sun, and L.-S. Zheng (2018). J. Am. Chem. Soc. 140, 1600–1603.

    CAS  PubMed  Google Scholar 

  36. 36.

    K. Tang, X.-L. Jin, H. Yan, X.-J. Xie, C.-L. Liu, and Q.-H. Gong (2001). J. Chem. Soc., Dalton Trans. 8, 1374–1377.

    Google Scholar 

  37. 37.

    I. Chakraborty, W. Kurashige, K. Kanehira, L. Gell, H. Häkkinen, Y. Negishi, and T. Pradeep (2013). J. Phys. Chem. Lett. 4, 3351–3355.

    CAS  PubMed  Google Scholar 

  38. 38.

    C. Nitschke, A. I. Wallbank, D. Fenske, and J. F. Corrigan (2007). J. Clust. Sci. 18, 131–140.

    CAS  Google Scholar 

  39. 39.

    I. Chakraborty and T. Pradeep (2014). J. Phys. Chem. Lett. 6, 14190–14194.

    CAS  Google Scholar 

  40. 40.

    S.-S. Zhang, F. Alkan, H.-F. Su, C. M. Aikens, C.-H. Tung, and D. Sun (2019). J. Am. Chem. Soc. 141, 4460–4467.

    CAS  PubMed  Google Scholar 

  41. 41.

    Z. Wang, H.-T. Sun, M. Kurmoo, Q.-Y. Liu, G.-L. Zhuang, Q.-Q. Zhao, X.-P. Wang, C.-H. Tung, and D. Sun (2019). Chem. Sci. 10, 4862–4867.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Y.-P. Xie and T. C. W. Mak (2011). J. Am. Chem. Soc. 133, 3760–3763.

    CAS  PubMed  Google Scholar 

  43. 43.

    L. Zhao, C. Wan, J. Han, X. Chen, and T. C. W. Mak (2008). Chem. Eur. J. 14, 10437–10444.

    CAS  PubMed  Google Scholar 

  44. 44.

    G. M. Sheldrick SADABS (University of Göttingen, Germany, 1996).

    Google Scholar 

  45. 45.

    G. M. Sheldrick (1990). Acta Crystallogr. A 46, 467–473.

    Google Scholar 

  46. 46.

    G. M. Sheldrick (2015). Acta Crystallogr. C Struct. Chem. 71, 3–8.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    G. M. Sheldrick Program for the Solution and Refinement of Crystal Structures (University of Göttingen, Germany, 1997), p. 1997.

    Google Scholar 

  48. 48.

    G. M. Sheldrick, SHELXTL: release 4.1 for Siemens Crystallographic Research Systems (1990).

  49. 49.

    A. L. Spek (2015). Acta Cryst. C71, 9–18.

    Google Scholar 

  50. 50.

    M. S. Fallah, C. E. Anson, D. Fenske, and A. Rothenberger (2005). Dalton Trans. 13, 2300–2304.

    Google Scholar 

  51. 51.

    J. Yan, C. Wang, H. Xu, Y. Xu, X. She, J. Chen, Y. Song, H. Li, and Q. Zhang (2013). Appl. Surf. Sci. 287, 178–186.

    CAS  Google Scholar 

  52. 52.

    P. Käll, J. Grins, M. Fahlman, and F. Söderlind (2001). Polyhedron. 20, 2747–2753.

    Google Scholar 

  53. 53.

    J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, 1992).

    Google Scholar 

  54. 54.

    V. W. W. Yam and K. K. W. Lo (1999). Chem. Soc. Rev. 28, 323–334.

    CAS  Google Scholar 

  55. 55.

    C. Yu, L. Wei, J. Chen, Y. Xie, W. Zhou, and Q. Fan (2014). Ind. Eng. Chem. Res. 53, 5759–5766.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was also supported by the National Natural Science Foundation of China (Grand. No. 21601097), the Project of Key Research Plan of Ningxia (2018BEE03006), the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2019-KF-01).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kuan-Guan Liu or Xiao-Wei Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

1979531

Supplementary material 1 (DOCX 238 kb) The structures reported herein have been deposited at the Cambridge Crystallographic Data Centre, CCDC . For ESI and crystallographic data in CIF or other electronic format see https://doi.org/10.1039/x0xx00000x

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, HJ., Wei, XW., Liu, KG. et al. High-Nuclearity Silver-alkynyl Cluster Encapsulating Two Carbonates Generated from Atmospheric Carbon Dioxide Fixation and Co-protected by Diphenylphosphinate Ligands. J Clust Sci 32, 437–443 (2021). https://doi.org/10.1007/s10876-020-01802-x

Download citation

Keywords

  • Silver(I)-alkynyl cluster
  • Anion-template
  • Luminescence
  • Carbon dioxide fixation
  • Diphenylphosphinate