Molecular Interaction, Antimicrobial, Antioxidant, Cytotoxic and Magnetic Properties of Mn12 Benzoate


The synthesis, crystal structure, antimicrobial activity, cytotoxic effect on root tip of Allium cepa Linn (A. cepa L.), antioxidant and magnetochemical properties of [Mn12O12(PhCO2)16(CH3OH)4]·3CH3CN (1) cluster and its molecular interaction with Rhodamine B (RhB) are reported herein. The degree of molecular interaction of RhB with Mn12 benzoate radically changed with time. The absorption peak of Rh B at 554 nm disappeared with addition of solid Mn12 benzoate and a new peak appeared at 497 nm, which indicated a possible molecular interaction between Mn12 benzoate and RhB. Mn12 benzoate significantly inhibited the maximum growth of Enterococcus faecalis MCC 2041(T) with a value of inhibition zone of 14.00 ± 0.76, compared to other bacteria. The MIC and MBC of the test sample against the sensitive bacterial strains was in the range of 30–10 mg/mL and 40–10 mg/mL, respectively; whereas the parental compound did not show any zone of inhibition. The cytotoxicity and DNA damage study in root tip cells of A. cepa L. demonstrated very promising result in presence of Mn12 benzoate. The antioxidant activity of Mn12 benzoate was assessed by 2, 2′-diphenyl-1-picryl hydrazyl radical (DPPH·) assay and the free radical scavenging activity was found to be 68.8%. Variable-temperature (T) and -field (H) solid-state dielectric current (dc) and alternative current (ac) magnetic susceptibility measurements were done on complex 1 over 1.8–300 K, which exhibited ground state spins of S = 10.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    S. Mukherjee, J. A. Stull, J. Yano, T. C. Stamatatos, K. Pringouri, T. A. Stich, K. A. Abboud, R. D. Britt, V. K. Yachandra, and G. Christou (2012). Proc. Natl. Acad. Sci.109, 2257–2262.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    E. Y. Tsui, J. S. Kanady, and T. Agapie (2013). Inorg. Chem.52, 13833–13848.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    A. Galstyan, A. Robertazzi, and E. W. Knapp (2012). J. Am. Chem. Soc.134, 7442–7449.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    M. M. Najafpour, M. Z. Ghobadi, B. Haghighi, T. Tomo, J. R. Shen, and S. I. Allakhverdiev (2015). Biochim. Biophys. Acta.1847, 294–306.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    S. Pathak, M. K. Ghosh, and T. K. Ghorai (2018). ChemistrySelect3, 13501–13506.

    CAS  Article  Google Scholar 

  6. 6.

    L. Yang, X. Li, C. Y. Sun, H. Wu, C. G. Wang, and Z. M. Su (2017). New J. Chem.41, 3661–3666.

    CAS  Article  Google Scholar 

  7. 7.

    S. Pathak, B. Jana, M. Mandal, V. Mandal, and T. K. Ghorai (2017). J. Mol. Struc.1147, 480–486.

    CAS  Article  Google Scholar 

  8. 8.

    S. Pathak, M. K. Ghosh, M. Mandal, V. Mandal, A. Bhattacharyya, and T. K. Ghorai (2019). New J. Chem..

    Article  Google Scholar 

  9. 9.

    P. Jayaseelan, S. Prasad, S. Vedanayaki, and R. Rajavel (2016). Arab. J. Chem.9, S668–S677.

    CAS  Article  Google Scholar 

  10. 10.

    K. Gopinath, K. S. Venkatesh, R. Ilangovan, K. Sankaranarayanan, and A. Arumugam (2013). Ind. Crops Prod.50, 737–742.

    CAS  Article  Google Scholar 

  11. 11.

    G. Rubner, K. Bensdorf, A. Wellner, B. Kircher, S. Bergemann, I. Ott, and R. Gust (2010). J. Med. Chem.53, 6889–6898.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    P. Gull, M. A. Malik, O. A. Dar, and A. A. Hashmi (2017). J. Mol. Struc.1134, 734–741.

    CAS  Article  Google Scholar 

  13. 13.

    P. I. Khandelwa and P. Poddar (2017). J. Mater. Chem. B.5, 9055–9084.

    Article  Google Scholar 

  14. 14.

    N. Watari, S. Ohnishi, and Y. Ishii (2000). J Phys. Condens. Matter.12, 6799–6823.

    CAS  Article  Google Scholar 

  15. 15.

    S. A. Corrales, J. M. Cain, K. A. Uhlig, A. M. Mowson, C. Papatriantafyllopoulou, M. K. Peprah, A. Ozarowski, A. J. Tasiopoulos, G. Christou, M. W. Meisel, and C. Lampropoulos (2016). Inorg. Chem.55, 1367–1369.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    R. Gupta, I. Khan, F. Hussain, A. M. Bossoh, I. M. Mbomekallé, P. de Oliveira, M. Sadakane, C. Kato, K. Ichihashi, K. Inoue, and S. Nishihara (2017). Inorg. Chem.56, 8759–8767.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    T. Taguchi, W. Wernsdorfer, K. A. Abboud, and G. Christou (2010). Inorg. Chem.49, 10579–10589.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    D. I. Alexandropoulos, K. M. Poole, L. Cunha-Silva, J. A. Sheikh, W. Wernsdorfer, G. Christou, and T. C. Stamatatos (2017). Chem. Commun.53, 4266–4269.

    CAS  Article  Google Scholar 

  19. 19.

    N. Bridonneau, L. M. Chamoreau, G. Gontard, J. L. Cantin, J. von Bardeleben, and V. Marvaud (2016). Dalton Trans.45, 9412–9418.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    S. Goel, Z. Wu, S. I. Zones, and E. Iglesia (2012). J. Am. Chem. Soc.134, 17688–17695.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    P. C. Appelbaum and P. A. Hunter (2000). Int J Antimicrob Agents.16, 5–15.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    S. J. Brickner, D. K. Hutchinson, M. R. Barbachyn, P. R. Manninen, D. A. Ulanowicz, S. A. Garmon, K. C. Grega, S. K. Hendges, D. S. Toops, C. W. Ford, and G. E. Zurenko (1996). J. Med. Chem.39, 673–679.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    V. T. Andriole (1998). Curr. Clin. Top. Infect. Dis.18, 19–36.

    CAS  PubMed  Google Scholar 

  24. 24.

    A. A. Warra (2011). J. Chem. Pharm. Res3, 951–958.

    CAS  Google Scholar 

  25. 25.

    E. E. Moushi, T. C. Stamatatos, W. Wernsdorfer, V. Nastopoulos, G. Christou, and A. J. Tasiopoulos (2008). Inorg. Chem.48, 5049–5051.

    Article  CAS  Google Scholar 

  26. 26.

    A. M. Ako, M. S. Alam, S. Mameri, Y. Lan, M. Hibert, M. Stocker, P. Müller, C. E. Anson, and A. K. Powell (2012). Eur. J. Inorg. Chem.26, 4131–4140.

    Article  CAS  Google Scholar 

  27. 27.

    S. Mameri, A. M. Ako, F. Yesil, M. Hibert, Y. Lan, C. E. Anson, and A. K. Powell (2014). Eur. J. Inorg. Chem.26, 4326–4334.

    Article  CAS  Google Scholar 

  28. 28.

    S. Schmitz, J. V. Leusen, A. Ellern, P. Kögerler, and K. Y. Monakhov (2015). Inorg. Chem. Front.2, 1095–1100.

    CAS  Article  Google Scholar 

  29. 29.

    M. Murugesu, S. Takahashi, A. Wilson, K. A. Abboud, W. Wernsdorfer, S. Hill, and G. Christou (2008). Inorg. chem.47, 9459–9470.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    R. Sessoli, H. L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, and D. N. Hendrickson (1993). J. Am. Chem. Soc.115, 1804–1816.

    CAS  Article  Google Scholar 

  31. 31.

    A. J. Tasiopoulos, W. Wernsdorfer, K. A. Abboud, and G. Christou (2004). Angew. Chem.116, 6498–6502.

    Article  Google Scholar 

  32. 32.

    P. King, W. Wernsdorfer, K. A. Abboud, and G. Christou (2005). Inorg. Chem.44, 8659–8669.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    N. E. Chakov, L. N. Zakharov, A. L. Rheingold, K. A. Abboud, and G. Christou (2005). Inorg. Chem.44, 4555–4567.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    I. D. Brown and D. Altermatt (1985). Acta Crystallogr. Sect. B41, 244–247.

    Article  Google Scholar 

  35. 35.

    W. Liu and H. H. Thorp (1993). Inorg. Chem.32, 4102–4105.

    CAS  Article  Google Scholar 

  36. 36.

    A. E. Robinson, A. H. Beckett, and R. N. Dar (1960). J. Pharm. Pharmacol.12, 385–399.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    S. Abraham (1997). Cytologia.62, 291–294.

    Article  Google Scholar 

  38. 38.

    A. K. Datta and A. K. Biswas (1983). Cytologia.48, 293–303.

    Article  Google Scholar 

  39. 39.

    A. K. Datta, A. K. Biswas, and S. Sen (1986). Cytologia51, 609–615.

    Article  Google Scholar 

  40. 40.

    S. Rang and A. K. Datta (1998). J. Natl. Bot. Soc.52, 17–22.

    Google Scholar 

  41. 41.

    D. S. Kumar, D. Chakrabarty, A. K. Verma, and B. K. Banerji (2011). Caryologia64, 388–397.

    CAS  Article  Google Scholar 

  42. 42.

    G. C. Kamble and A. S. Patil (2014). Int. J. Sci. Environ. Technol.3, 166–180.

    Google Scholar 

  43. 43.

    S. Cotelle, J. F. Masfaraud, and J. F. Férard (1999). Mutat. Res.426, 167–171.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    K. Klančnik, D. Drobne, J. Valant, and J. D. Koce (2011). Ecotoxicol. Environ. Saf.74, 85–92.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    A. H. Siddiqui, S. Tabrez, and M. Ahmad (2011). Environ. Monit. Assess.179, 241–253.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    M. Ajaib, M. Almas, K. Mohammed Khan, S. Perveen, and S. Shah (2016). J. Chem. Soc. Pak.38, 345–351.

    CAS  Google Scholar 

  47. 47.

    M. Ajaib, A. Mati-ur-Rehman, K. Mohammed Khan, S. Perveen, and S. Shah (2015). J. Chem. Soc. Pak.37, 559–566.

    CAS  Google Scholar 

  48. 48.

    J. B. Vincent, H. R. Chang, K. Folting, J. C. Huffman, G. Christou, and D. N. Hendrickson (1987). J. Am. Chem. Soc.109, 5703–5711.

    CAS  Article  Google Scholar 

  49. 49.

    P. V. Van der Sluis and A. L. Spek (1990). Acta Crystallogr. Sect. A46, 194–201.

    Article  Google Scholar 

  50. 50.

    SHELXTL6, Bruker-AXS, Madison, Wisconsin, 2008, USA.

  51. 51.

    A. L. Spek (2009). PLATON Acta Cryst.D65, 148–155.

    Google Scholar 

  52. 52.

    E. R. Davidson Magnet (Indiana University, Bloomington, 1999).

    Google Scholar 

  53. 53.

    M. Mandal, S. Paul, M. R. Uddin, M. A. Mondal, S. Mandal, and V. Mandal (2016). Asian Pac. J. Trop. Dis.6, 54–62.

    Article  Google Scholar 

  54. 54.

    A. Daphedar and T. C. Taranath (2017). Environ. Sci. Pollut. Res.24, 25861–25869.

    CAS  Article  Google Scholar 

  55. 55.

    S. K. Chandraker, P. Singh, and B. Pandey (2014). Int. J. Curr. Microbiol. Appl. Sci.3, 200–206.

    Google Scholar 

  56. 56.

    G. Fiskesjo (1997). Plants. Environ. Stud.101, 307–333.

    Article  Google Scholar 

  57. 57.

    A. Akinboro and A. A. Bakare (2007). J. Ethnopharmacol.112, 470–475.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    G. Fiskesjö (1985). Hereditas.102, 99–112.

    PubMed  Article  Google Scholar 

  59. 59.

    P. Bhatta and S. R. Sakya (2009). Int. J. Ecol.15, 83–88.

    Google Scholar 

  60. 60.

    M. Kumari, S. S. Khan, S. Pakrashi, A. Mukherjee, and N. Chandrasekaran (2011). J Hazard Mater.190, 613–621.

    CAS  PubMed  Article  Google Scholar 

Download references


The authors would like to acknowledge the Madhya Pradesh Council of Science & Technology, Govt. of India (File No. A/R&D/RP-2/Phy&Engg./2017-18/271) and Indira Gandhi National Tribal University, Amarkantak, MP. The authors also express sincere thanks to IACS Kolkata for CHN Analysis and DAE Indore for Magnetic measurement.

Author information




MKG carried out the synthesis of complex 1, experiment of molecular interaction, antioxidant activity and also performed for drafting the manuscript. Antimicrobial activity studied by MM and VM, Cytotoxic effect and the statistical analysis performed by SKC and RS. The whole manuscript was design, validate the data, evaluation, conceived the study and writing by TKG. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tanmay K. Ghorai.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 70 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M.K., Chandraker, S.K., Shukla, R. et al. Molecular Interaction, Antimicrobial, Antioxidant, Cytotoxic and Magnetic Properties of Mn12 Benzoate. J Clust Sci 31, 575–589 (2020).

Download citation


  • Mn12 benzoate
  • Molecular interaction
  • Antimicrobial properties
  • Cytotoxic effect
  • Antioxidant activity
  • Magnetic study