Skip to main content
Log in

Fabrication and Luminescence Properties of Flower-Like Cadmium Sulfide Using 1-Benzylidenethiourea as Sulfur Source and Capping Agent

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A thio Schiff base ligand, 1-benzylidenethiourea (L), was used as sulfur source and capping agent together for preparation of CdS nanostructures via solvothermal method in glycerol solvent. The Schiff base was characterized by elemental analysis as well as FT-IR and 1H, 13CNMR spectroscopies. Structure characterization of obtained CdS nanoparticles were studied by XRD, EDX, FT-IR and UV–Vis spectroscopies. SEM and TEM images were showed that the synthesized CdS have flower-like structures contain of several nanorods. The optical properties of the product was characterized by photoluminescence (PL) spectroscopy measurements. The PL spectrum of CdS nanoparticles shows a blue visible spectrum. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The effect of some parameter such as solvent type, temperature and duration of reaction on size and morphology of CdS nanostructure was investigated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg (2011). ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56, 175–287.

    Article  CAS  Google Scholar 

  2. H. Cho, C. Yun, J.-W. Park, and S. Yoo (2009). Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes. Organ. Electron. 10, 1163–1169.

    Article  CAS  Google Scholar 

  3. X. Liu, X. Cai, J. Mao, and C. Jin (2001). ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application. Appl. Surf. Sci. 183, 103–110.

    Article  CAS  Google Scholar 

  4. M. Schlamp, X. Peng, and A. Alivisatos (1997). Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837–5842.

    Article  CAS  Google Scholar 

  5. Y.-J. Shen and Y.-L. Lee (2008). Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications. Nanotechnology 19, 045602.

    Article  CAS  PubMed  Google Scholar 

  6. S. Biswas, M. Hossain, and T. Takahashi (2008). Fabrication of Grätzel solar cell with TiO2/CdS bilayered photoelectrode. Thin Solid Films 517, 1284–1288.

    Article  CAS  Google Scholar 

  7. K. E. Sapsford, T. Pons, I. L. Medintz, and H. Mattoussi (2006). Biosensing with luminescent semiconductor quantum dots. Sensors 6, 925–953.

    Article  CAS  Google Scholar 

  8. G. Tai and W. Guo (2008). Sonochemistry-assisted microwave synthesis and optical study of single-crystalline CdS nanoflowers. Ultrason. Sonochem. 15, 350–356.

    Article  CAS  PubMed  Google Scholar 

  9. A. V. Murugan, R. Sonawane, B. Kale, S. Apte, and A. V. Kulkarni (2001). Microwave–solvothermal synthesis of nanocrystalline cadmium sulfide. Mater. Chem. Phys. 71, 98–102.

    Article  Google Scholar 

  10. C. Li, X. Yang, B. Yang, Y. Yan, and Y. Qian (2006). Growth of microtubular complexes as precursors to synthesize nanocrystalline ZnS and CdS. J. Cryst. Growth 291, 45–51.

    Article  CAS  Google Scholar 

  11. T. Thongtem, A. Phuruangrat, and S. Thongtem (2007). Free surfactant synthesis of microcrystalline CdS by solvothermal reaction. Mater. Lett. 61, 3235–3238.

    Article  CAS  Google Scholar 

  12. J. Ma, G. Tai, and W. Guo (2010). Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles. Ultrason. Sonochem. 17, 534–540.

    Article  CAS  PubMed  Google Scholar 

  13. G. Tai, J. Zhou, and W. Guo (2010). Inorganic salt-induced phase control and optical characterization of cadmium sulfide nanoparticles. Nanotechnology 21, 175601.

    Article  CAS  PubMed  Google Scholar 

  14. R. Ma, X. Wei, L. Dai, H. Huo, and G. Qin (2007). Synthesis of CdS nanowire networks and their optical and electrical properties. Nanotechnology 18, 205605.

    Article  CAS  Google Scholar 

  15. F. Vaquero, R. Navarro, and J. Fierro (2016). Evolution of the nanostructure of CdS using solvothermal synthesis at different temperature and its influence on the photoactivity for hydrogen production. Int. J. Hydrog. Energy 41, 11558–11567.

    Article  CAS  Google Scholar 

  16. D. Chen, K. Tang, G. Shen, J. Sheng, Z. Fang, X. Liu, H. Zheng, and Y. Qian (2003). Microwave-assisted synthesis of metal sulfides in ethylene glycol. Mater. Chem. Phys. 82, 206–209.

    Article  CAS  Google Scholar 

  17. X.-H. Liao, J.-J. Zhu, and H.-Y. Chen (2001). Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Mater. Sci. Eng. B 85, 85–89.

    Article  Google Scholar 

  18. P. Iranmanesh, S. Saeednia, S. RashidiDafeh, and F. Yahyanasab (2015). Ultrasound Assisted Synthesis and Characterization of Mn Doped CdS Nanocrystalline Zinc-Blendes. J. Nanostruct. 5, 375–383.

    Article  CAS  Google Scholar 

  19. A. Phuruangrat, T. Thongtem, and S. Thongtem (2012). Characterization and photonic absorption of hierarchical tree-like CdS nanostructure synthesized by solvothermal method. Mater. Lett. 80, 114–116.

    Article  CAS  Google Scholar 

  20. S. H. Choi, K. An, E. G. Kim, J. H. Yu, J. H. Kim, and T. Hyeon (2009). Simple and generalized synthesis of semiconducting metal sulfide nanocrystals. Adv. Funct. Mater. 19, 1645–1649.

    Article  CAS  Google Scholar 

  21. Y. Ni, F. Wang, H. Liu, G. Yin, J. Hong, X. Ma, and Z. Xu (2004). A novel aqueous-phase route to prepare flower-shaped PbS micron crystals. J. Cryst. Growth 262, 399–402.

    Article  CAS  Google Scholar 

  22. P. Iranmanesh, S. Saeednia, and N. Khorasanipoor (2017). Tunable properties of cadmium substituted ZnS nanocrystals. Mater. Sci. Semicond. Process. 68, 193–198.

    Article  CAS  Google Scholar 

  23. S. Saeednia, P. Iranmanesh, M. Hatefi Ardakani, and M. Ahmadi (2018). Dinuclear cadmium (II) Schiff base complex: synthesis, crystal structure, spectroscopic characterization and application as a new precursor for preparation of nano-cadmium oxide. J. Iran. Chem. Soc. 15, 1163–1174.

    Article  CAS  Google Scholar 

  24. W. M. Haynes CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2014).

    Google Scholar 

  25. W. Qingqing, X. Gang, and H. Gaorong (2005). Solvothermal synthesis and characterization of uniform CdS nanowires in high yield. J. Solid State Chem. 178, 2680–2685.

    Article  CAS  Google Scholar 

  26. M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2009). Synthesis, thermal stability and photoluminescence of new cadmium sulfide/organic composite hollow sphere nanostructures. Inorg. Chim. Acta 362, 3677–3683.

    Article  CAS  Google Scholar 

  27. M. Shakouri-Arani and M. Salavati-Niasari (2014). Synthesis and characterization of cadmium sulfide nanocrystals in the presence of a new sulfur source via a simple solvothermal method. New J. Chem. 38, 1179–1185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this investigation by Vali-e-Asr University of Rafsanjan is gratefully acknowledged. The authors also thank Dr. Mohammad Sabet from Vali-e-Asr University of Rafsanjan for his valuable helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saeednia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeednia, S., Iranmanesh, P., Hatefi Ardakani, M. et al. Fabrication and Luminescence Properties of Flower-Like Cadmium Sulfide Using 1-Benzylidenethiourea as Sulfur Source and Capping Agent. J Clust Sci 30, 105–113 (2019). https://doi.org/10.1007/s10876-018-1467-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1467-2

Keywords

Navigation